RESUMO
Reclamation of pesticide-polluted lands has long been a difficult endeavour. The use of synthetic pesticides could not be restricted due to rising agricultural demand. Pesticide toxicity has become a pressing agronomic problem due to its adverse impact on agroecosystems, agricultural output, and consequently food security and safety. Among different techniques used for the reclamation of pesticide-polluted sites, microbial bioremediation is an eco-friendly approach, which focuses on the application of resilient plant growth promoting rhizobacteria (PGPR) that may transform or degrade chemical pesticides to innocuous forms. Such pesticide-resilient PGPR has demonstrated favourable effects on soil-plant systems, even in pesticide-contaminated environments, by degrading pesticides, providing macro-and micronutrients, and secreting active but variable secondary metabolites like-phytohormones, siderophores, ACC deaminase, etc. This review critically aims to advance mechanistic understanding related to the reduction of phytotoxicity of pesticides via the use of microbe-mediated remediation techniques leading to crop optimization in pesticide-stressed soils. The literature surveyed and data presented herein are extremely useful, offering agronomists-and crop protectionists microbes-assisted remedial strategies for affordably enhancing crop productivity in pesticide-stressed soils.
Assuntos
Praguicidas , Poluentes do Solo , Praguicidas/toxicidade , Consórcios Microbianos , Agricultura/métodos , Solo , Reguladores de Crescimento de Plantas , Poluentes do Solo/análiseRESUMO
Optimization of crop production in recent times has become essential to fulfil food demands of constantly increasing human populations worldwide. To address this formidable challenge, application of agro-chemicals including synthetic pesticides in intensive farm practices has increased alarmingly. The excessive and indiscriminate application of pesticides to foster food production however, leads to its exorbitant deposition in soils. After accumulation in soils beyond threshold limits, pesticides harmfully affect the abundance, diversity and composition and functions of rhizosphere microbiome. Also, the cost of pesticides and emergence of resistance among insect-pests against pesticides are other reasons that require attention. Due to this, loss in soil nutrient pool cause a substantive reduction in agricultural production which warrant the search for newer environmentally friendly technology for sustainable crop production. Rhizosphere microbes, in this context, play vital roles in detoxifying the polluted environment making soil amenable for cultivation through detoxification of pollutants, rhizoremediation, bioremediation, pesticide degradation, and stress alleviation, leading to yield optimization. The response of soil microorganisms to range of chemical pesticides is variable ranging from unfavourable to the death of beneficial microbes. At cellular and biochemical levels, pesticides destruct the morphology, ultrastructure, viability/cellular permeability, and many biochemical reactions including protein profiles of soil bacteria. Several classes of pesticides also disturb the molecular interaction between crops and their symbionts impeding the overall useful biological processes. The harmful impact of pesticides on soil microbes, however, is poorly researched. In this review, the recent findings related with potential effects of synthetic pesticides on a range of soil microbiota is highlighted. Emphasis is given to find and suggest strategies to minimize the chemical pesticides usage in the real field conditions to preserve the viability of soil beneficial bacteria and soil quality for safe and sustainable crop production even in pesticide contaminated soils.
Assuntos
Microbiota , Praguicidas , Humanos , Solo , Praguicidas/toxicidade , Bactérias , RizosferaRESUMO
Traditionally, medicinal plants have long been used as a natural therapy. Plant-derived extracts or phytochemicals have been exploited as food additives and for curing many health-related ailments. The secondary metabolites produced by many plants have become an integral part of human health and have strengthened the value of plant extracts as herbal medicines. To fulfil the demand of health care systems, food and pharmaceutical industries, interest in the cultivation of precious medicinal plants to harvest bio-active compounds has increased considerably worldwide. To achieve maximum biomass and yield, growers generally apply chemical fertilizers which have detrimental impacts on the growth, development and phytoconstituents of such therapeutically important plants. Application of beneficial rhizosphere microbiota is an alternative strategy to enhance the production of valuable medicinal plants under both conventional and stressed conditions due to its low cost, environmentally friendly behaviour and non-destructive impact on fertility of soil, plants and human health. The microbiological approach improves plant growth by various direct and indirect mechanisms involving the abatement of various abiotic stresses. Given the negative impacts of fertilizers and multiple benefits of microbiological resources, the role of plant growth promoting rhizobacteria (PGPR) in the production of biomass and their impact on the quality of bio-active compounds (phytochemicals) and mitigation of abiotic stress to herbal plants have been described in this review. The PGPR based enhancement in the herbal products has potential for use as a low cost phytomedicine which can be used to improve health care systems.
Assuntos
Bactérias/crescimento & desenvolvimento , Bioprospecção , Produtos Agrícolas , Compostos Fitoquímicos , Plantas Medicinais , Rizosfera , Microbiologia do Solo , Produtos Agrícolas/química , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/microbiologia , Humanos , Compostos Fitoquímicos/química , Compostos Fitoquímicos/uso terapêutico , Plantas Medicinais/química , Plantas Medicinais/crescimento & desenvolvimento , Plantas Medicinais/microbiologiaRESUMO
Indiscriminate discharge of heavy metals/metalloids from different sources into the sustainable agro-ecosystem is a major global concern for food security and human health. Arsenic (As), categorized as group one human carcinogen is a quintessential toxic metalloid that alters the microbial compositions and functions, induce physiological and metabolic changes in plants and contaminate surface/ground water. The management of arsenic toxicity, therefore, becomes imminent. Acknowledging the arsenic threat, the study was aimed at identifying arsenic resistant bacteria and evaluating its arsenic removal/detoxification potential. Of the total 118 bacterial isolates recovered from arsenic rich environment, the bacterial strain RSC3 demonstrating highest As tolerance was identified as Enterobacter cloacae by 16S rRNA gene sequence analysis. Enterobacter cloacae tolerated high concentration (6000 ppm) of As and exhibited 0.55 h-1 of specific growth rate as calculated from growth kinetics data. Strain RSC3 also displayed varying level of resistance to other heavy metals and many antibacterial drugs in plate bioassay. The bacterial strain RSC3 possessed gene (arsC) which causes transformation of arsenate to arsenite. The arsenate uptake and efflux of the bacterial cells was revealed by high throughput techniques such as AAS, SEM/TEM and EDX. The simultaneous As reducing ability, and multi metal/multi-antibiotics resistance potentials of E. cloacae provides a promising option in the microbes based remediation of As contaminated environments.
RESUMO
In this work, an attempt was made to evaluate the effect of pesticides on growth pattern, surface morphology, cell viability and growth regulators of nitrogen fixing soil bacterium. Pesticide tolerant Azotobacter vinelandii strain AZ6 (Accession no. MG028654) was found to tolerate maximum level of pesticide and displayed multifarious PGP activities. At higher concentrations, pesticides triggered cellular/structural damage and reduced the cell viability as clearly shown under SEM and CLSM. With increase in concentration, pesticides exhibited a significant (pâ¯<â¯0.05) decrease in PGP traits of strain AZ6. Among all three groups of pesticides, herbicides glyphosate and atrazine were most toxic. Kitazin, hexaconazole, metalaxyl, glyphosate, quizalofop, atrazine, fipronil, monocrotophos and imidacloprid at 2400, 1800, 1500, 900, 1200, 900, 1800, 2100 and 2700⯵gâ¯mL-1, respectively, decreased the production of IAA by 19.5⯱â¯1.9 (61%), 18.1⯱â¯1.2 (64%), 36.4⯱â¯3.4 (28%), 13.1⯱â¯0.8 (74%), 15.6⯱â¯1.0 (69%), 7.6⯱â¯0.5 (83%), 11.9⯱â¯0.8 (76%), 24.7⯱â¯1.7 (51%) and 32⯱â¯2.3 (37%)⯵gâ¯mL-1, respectively, over control (50.7⯱â¯3.6⯵gâ¯mL-1). A maximum reduction of 8.4⯱â¯1.2 (46%), 5.8⯱â¯0.6 (62%) and 4⯱â¯0.2 (74%)⯵gâ¯mL-1 in 2, 3-DHBA at 300 (1×), 600 (2×) and 900 (3×)⯵gâ¯mL-1 glyphosate, respectively, While, 32.8⯱â¯2.7 (19%), 27.2⯱â¯2 (33%) and 21.5⯱â¯1.3 (47%)⯵gâ¯mL-1, respectively in the production of SA was observed at 300 (1×), 600 (2×) and 900 (3×)⯵gâ¯mL-1 atrazine, respectively. Likewise, with increase in concentration of pesticides, decrease in P solubilization ability and change in pH of broth was detected. The order of pesticide toxicity to PSE (percent decline over control) at highest concentration was: atrazine (45)â¯>â¯kitazin (44)â¯>â¯metalaxyl (43)â¯>â¯monocrotophos (43)â¯>â¯glyphosate (41)â¯>â¯hexaconazole (39)â¯>â¯quizalofop (33)â¯>â¯imidacloprid (31)â¯>â¯fipronil (25). The present study undoubtedly suggests that even at higher doses of pesticides, A. vinelandii maintained secreting plant growth regulators and this property makes this strain agronomically important microbe for enhancing the growth of plants.
Assuntos
Azotobacter vinelandii/efeitos dos fármacos , Fungicidas Industriais/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Microscopia Eletroquímica de Varredura , Reguladores de Crescimento de Plantas , RizosferaRESUMO
ABSTRACT: This study was aimed at producing the eco-friendly, safe, and inexpensive silver (Ag) nanoparticles (NPs) and assessing its antimicrobial activity. Fungal pathogens isolated from diseased leaves and fruits of brinjal and bacterial pathogen obtained from a culture collection were used in this study. Green synthesis of AgNPs was performed and optimized using Azadirachta indica leaf extract. The newly synthesized AgNPs (λmax = 437 nm) showed isotropism in size (crystal size/diameter: 21/29 ± 5 nm) and morphology under transmission and scanning electron microscopy and energy dispersive X-ray analysis. The fourier transform infrared spectroscopy data suggested the role of various aliphatic/aromatic moieties and proteins in AgNPs stabilization. The AgNPs reduced the growth of Penicillium sp. maximally by 92% after 6 days. The sensitivity of test fungi towards AgNPs followed the order: Penicillium sp. (92%) > Fusarium sp. (89%) > Aspergillus sp. (69%). Exposure of Ralstonia solanacearum to AgNPs (MIC/MBC 200/400 µg ml-1) displayed damaged cellular envelopes, bulging of cells, and pit formation. The nucleic acid discharge showed a progressive increase from 8 to 34% (r2 = 0.97). The cellular metabolic activity and surface adhering ability of R. solanacearum were completely lost at 400 µgAgNPs ml-1. Results suggested that the AgNPs synthesized in this study had enough anti-pathogenic potential and could inexpensively and safely be used as a promising alternative to agrochemicals. Moreover, the findings observed in this study is likely to serve as an important indicator for the development of effective nano-control agents which in effect would help to manage some deadly phyto-pathogens capable of causing heavy losses to agricultural production systems. GRAPHICAL ABSTRACT: Effective inhibition of phytopathogenic microbes by eco-friendly neem leaf extract mediated silver nanoparticles (AgNPs).
RESUMO
In vitro experiments were performed to ascertain the impact of kitazin, hexaconazole, metalaxyl and carbendazim on growth behaviour, enzymatic profile, ultrastructure, cell permeability and bioactive molecules of phosphate-solubilizing bacterium. Strain BC8 isolated from Brassica oleracea rhizosphere was characterized and identified as Bacillus subtilis by 16S rDNA sequencing (Accession no. MG028650) technique. Strain BC8 was unambiguously chosen due to its high tolerance capability to various fungicides and substantial production of plant growth regulators. The biomarker enzymatic assays (lipid peroxidation, lactate dehydrogenase) and oxidative stress (catalase) induced by fungicides exhibited significant (pâ¯<â¯0.05) toxicity of fungicides toward strain BC8. Fungicides caused the cellular/ultrastructural damage and reduced the viability of strain BC8 as clearly revealed under scanning (SEM), high resolution transmission (HR-TEM) and confocal laser scanning (CLSM) microscopy. As the concentration of fungicides increased, a gradual drop in the plant growth promoting traits of B. subtilis strain BC8 was observed. Kitazin at 2400⯵gâ¯mL-1, hexaconazole at 1500⯵gâ¯mL-1, metalaxyl at 1200⯵gâ¯mL-1 and carbendazim at 1200⯵gâ¯mL-1decreased the IAA production by 35 (48.3⯵gâ¯mL-1), 27 (51.5⯵gâ¯mL-1), 39 (43.6⯵gâ¯mL-1) and 47% (37.3⯵gâ¯mL-1), respectively, over control (71.3⯵gâ¯mL-1), while, α-ketobutyrate was declined by 51 (29.6), 56 (26.2), 61 (22.8) and 68 (19)%, respectively, over untreated control (59.9â¯mg protein-1â¯h-1). Also, with increase in the concentration of fungicides there was a significant decrease in plant nutrient (P); the maximum being (19.6⯵gâ¯mL-1) observed at 1500⯵gâ¯mL-1 hexaconazole with consequent drop in pH (from pHâ¯6.4 to 4.2). The current findings clearly suggest that despite injury, B. subtilis maintained secreting active biomolecules and this property makes this organism truly indispensable for enhancing crop production under fungicide stressed conditions.
Assuntos
Bacillus subtilis/efeitos dos fármacos , Enzimas/metabolismo , Fungicidas Industriais/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/ultraestrutura , Brassica/microbiologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Sobrevivência Celular , DNA Ribossômico/genética , Testes de Sensibilidade Microbiana , Microscopia Confocal , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Estresse Oxidativo , RNA Bacteriano/genética , RNA Ribossômico 16S/genéticaRESUMO
Considering the heavy metal risk to soil microbiota and agro-ecosystems, the study was designed to determine metal toxicity to bacteria and to find metal tolerant bacteria carrying multifarious plant growth promoting activities and to assess their impact on chickpea cultivated in stressed soils. Metal tolerant strain SFP1 recognized as Pseudomonas aeruginosa employing 16S rRNA gene sequence determination showed maximum tolerance to Cr (400 µg/ml) and Ni (800 µg/ml) and produced variable amounts of indole acetic acid, HCN, NH3, and ACC deaminase and could solubilize insoluble phosphates even under Cr (VI) and Ni stress. Metal tolerant P. aeruginosa reduced toxicity of Cr (VI) and Ni and concomitantly enhanced the performance of chickpea grown under stressed and conventional soils. At 144 mg Cr kg-1, the measured parameters of a bacterial strain was significantly enhanced, but it was lower compared to those recorded at 660 mg Ni kg-1. The strain SFP1 demonstrated maximum increase in seed yield (81%) and grain protein (16%) at 660 mg Ni kg-1 over uninoculated and untreated control. Stressed plants had more proline, antioxidant enzymes, and metal concentrations in plant tissues. P. aeruginosa, however, remarkably declined the level of stress markers (proline and APX, SOD, CAT, and GR), as well as with Cr (VI) and Ni uptake by chickpea. Conclusively, P. aeruginosa strain SFP1 due to its dual metal tolerant ability, capacity to secrete plant growth promoting regulators even under metal stress and potential to mitigate metal toxicity, could be developed as microbial inoculant for enhancing chickpea production in Cr and Ni contaminated soils.
Assuntos
Cicer/microbiologia , Metais Pesados/toxicidade , Prolina/metabolismo , Pseudomonas aeruginosa/crescimento & desenvolvimento , Poluentes do Solo/toxicidade , Silicatos de Alumínio , Antioxidantes , Carbono-Carbono Liases , Cromo/metabolismo , Cicer/efeitos dos fármacos , Argila , Monitoramento Ambiental , Ácidos Indolacéticos/metabolismo , Níquel , Desenvolvimento Vegetal , Reguladores de Crescimento de Plantas , RNA Ribossômico 16S/genética , Solo , Microbiologia do Solo , Poluentes do Solo/análiseRESUMO
Nanotechnology based therapeutics has emerged as a promising approach for augmenting the activity of existing antimicrobials due to the unique physical and chemical properties of nanoparticles (NPs). Nickel oxide nanoparticles (NiO-NPs) have been suggested as prospective antibacterial and antitumor agent. In this study, NiO-NPs have been synthesized by a green approach using Eucalyptus globulus leaf extract and assessed for their bactericidal activity. The morphology and purity of synthesized NiO-NPs determined through various spectroscopic techniques like UV-Visible, FT-IR, XRD, EDX and electron microscopy differed considerably. The synthesized NiO-NPs were pleomorphic varying in size between 10 and 20 nm. The XRD analysis revealed the average size of NiO-NPs as 19 nm. The UV-Vis spectroscopic data showed a strong SPR of NiO-NPs with a characteristic spectral peak at 396 nm. The FTIR data revealed various functional moieties like C=C, C-N, C-H and O-H which elucidate the role of leaf biomolecules in capping and dispersal of NiO-NPs. The bioactivity assay revealed the antibacterial and anti-biofilm activity of NiO-NPs against ESßL (+) E. coli, P. aeruginosa, methicillin sensitive and resistant S. aureus. Growth inhibition assay demonstrated time and NiO-NPs concentration dependent decrease in the viability of treated cells. NiO-NPs induced biofilm inhibition was revealed by a sharp increase in characteristic red fluorescence of PI, while SEM images of NiO-NPs treated cells were irregular shrink and distorted with obvious depressions/indentations. The results suggested significant antibacterial and antibiofilm activity of NiO-NPs which may play an important role in the management of infectious diseases affecting human health.
Assuntos
Antibacterianos/biossíntese , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Eucalyptus/química , Níquel/metabolismo , Níquel/farmacologia , Extratos Vegetais/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/fisiologia , Eucalyptus/metabolismo , Humanos , Nanopartículas Metálicas/química , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Staphylococcus aureus Resistente à Meticilina/fisiologia , Testes de Sensibilidade Microbiana , Extratos Vegetais/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/fisiologia , Espectroscopia de Infravermelho com Transformada de FourierRESUMO
Introduction: Pseudomonas aeruginosa is notorious for its multidrug resistance and its involvement in hospital-acquired infections. In this study, 20 bacterial strains isolated from soil samples near the Hindan River in Ghaziabad, India, were investigated for their biochemical and morphological characteristics, with a focus on identifying strains with exceptional drug resistance and pyocyanin production. Methods: The isolated bacterial strains were subjected to biochemical and morphological analyses to characterize their properties, with a particular emphasis on exopolysaccharide production. Strain GZB16/CEES1, exhibiting remarkable drug resistance and pyocyanin production. Biochemical and molecular analyses, including sequencing of its 16S rRNA gene (accession number LN735036.1), plasmid-curing assays, and estimation of plasmid size, were conducted to elucidate its drug resistance mechanisms and further pyocynin based target the Candida albicans Strain GZB16/CEES1 demonstrated 100% resistance to various antibiotics used in the investigation, with plasmid-curing assays, suggesting plasmid-based resistance gene transmission. The plasmid in GZB16/CEES1 was estimated to be approximately 24 kb in size. The study focused on P. aeruginosa's pyocyanin production, revealing its association with anticandidal activity. The minimum inhibitory concentration (MIC) of the bacterial extract against Candida albicans was 50 µg/ml, with a slightly lower pyocyanin-based MIC of 38.5 µg/ml. Scanning electron microscopy illustrated direct interactions between P. aeruginosa strains and Candida albicans cells, leading to the destruction of the latter. Discussion: These findings underscore the potential of P. aeruginosa in understanding microbial interactions and developing strategies to combat fungal infections. The study highlights the importance of investigating bacterial-fungal interactions and the role of pyocyanin in antimicrobial activity. Further research in this area could lead to the development of novel therapeutic approaches for combating multidrug-resistant infections.
Assuntos
Antifúngicos , Candida albicans , Farmacorresistência Bacteriana Múltipla , Testes de Sensibilidade Microbiana , Plasmídeos , Pseudomonas aeruginosa , Piocianina , RNA Ribossômico 16S , Microbiologia do Solo , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Piocianina/metabolismo , Farmacorresistência Bacteriana Múltipla/genética , Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Candida albicans/genética , Candida albicans/crescimento & desenvolvimento , RNA Ribossômico 16S/genética , Índia , Plasmídeos/genética , Antibacterianos/farmacologia , AntibioseRESUMO
Pollution of the biosphere by heavy metals is a global threat that has accelerated dramatically since the beginning of industrial revolution. The aim of the study is to check the resistance of RL9 towards the metals and to observe the effect of Rhizobium species on growth, pigment content, protein and nickel uptake by lentil in the presence and absence of nickel. The multi metal tolerant and plant growth promoting Rhizobium strain RL9 was isolated from the nodules of lentil. The strain not only tolerated nickel but was also tolerant o cadmium, chromium, nickel, lead, zinc and copper. The strain tolerated nickel 500 µg/mL, cadmium 300 µg/mL, chromium 400 µg/mL, lead 1,400 µg/mL, zinc 1,000 µg/mL and copper 300 µg/mL, produced good amount of indole acetic acid and was also positive for siderophore, hydrogen cyanide and ammonia. The strain RL9 was further assessed with increasing concentrations of nickel when lentil was used as a test crop. The strain RL9 significantly increased growth, nodulation, chlorophyll, leghaemoglobin, nitrogen content, seed protein and seed yield compared to plants grown in the absence of bioinoculant but amended with nickel The strain RL9 decreased uptake of nickel in lentil compared to plants grown in the absence of bio-inoculant. Due to these intrinsic abilities strain RL9 could be utilized for growth promotion as well as for the remediation of nickel in nickel contaminated soil.
Assuntos
Recuperação e Remediação Ambiental/métodos , Lens (Planta)/efeitos dos fármacos , Metais Pesados/metabolismo , Rhizobium/metabolismo , Poluentes do Solo/metabolismo , Biodegradação Ambiental , Contagem de Colônia Microbiana , Relação Dose-Resposta a Droga , Índia , Ácidos Indolacéticos/metabolismo , Lens (Planta)/crescimento & desenvolvimento , Lens (Planta)/fisiologia , Especificidade da Espécie , Espectrofotometria AtômicaRESUMO
In plant biology, metabolomics is often used to quantitatively assess small molecules, metabolites, and their intermediates in plants. Metabolomics has frequently been applied to detect metabolic alterations in plants exposed to various biotic and abiotic stresses, including pesticides. The widespread use of pesticides and agrochemicals in intensive crop production systems is a serious threat to the functionality and sustainability of agroecosystems. Pesticide accumulation in soil may disrupt soil-plant relationships, thereby posing a pollution risk to agricultural output. Application of metabolomic techniques in the assessment of the biological consequences of pesticides at the molecular level has emerged as a crucial technique in exposome investigations. State-of-the-art metabolomic approaches such as GC-MS, LC-MS/MS UHPLC, UPLC-IMS-QToF, GC/EI/MS, MALDI-TOF MS, and 1H-HR-MAS NMR, etc., investigating the harmful effects of agricultural pesticides have been reviewed. This updated review seeks to outline the key uses of metabolomics related to the evaluation of the toxicological impacts of pesticides on agronomically important crops in exposome assays as well as bench-scale studies. Overall, this review describes the potential uses of metabolomics as a method for evaluating the safety of agricultural chemicals for regulatory applications. Additionally, the most recent developments in metabolomic tools applied to pesticide toxicology and also the difficulties in utilizing this approach are discussed.
RESUMO
Growth and productivity of crop plants worldwide are often adversely affected by anthropogenic and natural stresses. Both biotic and abiotic stresses may impact future food security and sustainability; global climate change will only exacerbate the threat. Nearly all stresses induce ethylene production in plants, which is detrimental to their growth and survival when present at higher concentrations. Consequently, management of ethylene production in plants is becoming an attractive option for countering the stress hormone and its effect on crop yield and productivity. In plants, ACC (1-aminocyclopropane-1-carboxylate) serves as a precursor for ethylene production. Soil microorganisms and root-associated plant growth promoting rhizobacteria (PGPR) that possess ACC deaminase activity regulate growth and development of plants under harsh environmental conditions by limiting ethylene levels in plants; this enzyme is, therefore, often designated as a "stress modulator." TheACC deaminase enzyme, encoded by the AcdS gene, is tightly controlled and regulated depending upon environmental conditions. Gene regulatory components of AcdS are made up of the LRP protein-coding regulatory gene and other regulatory components that are activated via distinct mechanisms under aerobic and anaerobic conditions. ACC deaminase-positive PGPR strains can intensively promote growth and development of crops being cultivated under abiotic stresses including salt stress, water deficit, waterlogging, temperature extremes, and presence of heavy metals, pesticides and other organic contaminants. Strategies for combating environmental stresses in plants, and improving growth by introducing the acdS gene into crop plants via bacteria, have been investigated. In the recent past, some rapid methods and cutting-edge technologies based on molecular biotechnology and omics approaches involving proteomics, transcriptomics, metagenomics, and next generation sequencing (NGS) have been proposed to reveal the variety and potential of ACC deaminase-producing PGPR that thrive under external stresses. Multiple stress-tolerant ACC deaminase-producing PGPR strains have demonstrated great promise in providing plant resistance/tolerance to various stressors and, therefore, it could be advantageous over other soil/plant microbiome that can flourish under stressed environments.
RESUMO
A total of 45 beneficial soil bacterial isolates (15 each of Pseudomonas, Azotobacter and phosphate solubilizing bacteria: PSB) recovered from polluted rhizosphere soils were morphologically and biochemically characterized. Bacterial isolates produced indole-3-acetic acid (IAA), phenolate siderophores; SA (salicylic acid) and 2, 3-dihydroxy benzoic acid (2, 3-DHBA), 1-amino cyclopropane 1-carboxylate (ACC) deaminase, solubilised insoluble phosphate (Pi), secreted exopolysaccharides (EPS) and produced ammonia and cyanogenic compound (HCN). Isolates were tested for their tolerance ability against 12 different agrochemicals (chemical pesticides) and 14 antibiotics. Among Pseudomonas, isolate PS1 showed maximum (2183 µg mL-1) tolerance to all tested agrochemicals. Likewise, among all Azotobacter isolates (n = 15), AZ12 showed maximum (1766 µg mL-1) while AZ7 had lowest (950 µg mL-1) tolerance ability to all tested agrochemicals. Moreover, among phosphate solubilizing bacterial isolates, maximum (1970 µg mL-1) and minimum (1308 µg mL-1) tolerance to agrochemicals was represented by PSB8 and PSB13 isolates, respectively. The antibiotic sensitivity/resistance among isolates varied considerably. As an example, Pseudomonas spp. was susceptible to several antibiotics, and inhibition zone differed between 10 mm (polymyxin B) to 34 mm (nalidixic acid). Also, isolate PS2 showed resistance to erythromycin, ciprofloxacin, methicillin, novobiocin and penicillin. The resistance percentage to multiple antibiotics among Azotobacter isolates varied between 7 and 33%. Among PSB isolates, inhibition zone differed between 10 and 40 mm and maximum and minimum resistance percentage to multiple antibiotics was recorded as 47% and 20%, respectively. The persistence of pesticides in agricultural soil may contribute to an increase in multidrug resistance among soil microorganisms. In conclusion, plant growth promoting (PGP) substances releasing soil microorganisms comprising of inherent/intrinsic properties of pesticides tolerance and antibiotics resistance may provide an attractive, agronomically feasible, and long-term prospective alternative for the augmentation of edible crops. However, in future, more research is needed to uncover the molecular processes behind the development of pesticide tolerance and antibiotic resistance among soil microorganisms.
RESUMO
The release and accumulation of metal-oxide nanoparticles in soils have threatened terrestrial plants. However, limited knowledge is available on the accumulation of nano-Al2O3 (22 nm), bulk-Al2O3 (167 nm), and Al3+ by maize plants and the subsequent impact on its physiology and growth in agar (0.7% w/v), hydroponic (1X), and soil. Maize plants were cultivated with 0.05-2 mg g-1 or ml-1 of three Al types and their biological attributes, oxidative status, Al bioaccumulation, and translocation were measured. The ICP-MS results revealed a dose-dependent increase (P ≤ 0.05 or ≤0.01) in Al content in maize tissues following nano-Al2O3 and Al3+ exposure, however, plants exposed to bulk-Al2O3 showed no significant uptake of Al. Atomic mapping by EDX during SEM analysis and TEM revealed varied distributions of nano-Al2O3 from roots to aerial parts and intracellular transportation. Al deposition in tissues followed the order: Al3+ > nano-Al2O3 > bulk-Al2O3 and therefore, a similar trend of toxicity was observed for seed germination, the emergence of plant organs, length, biomass accumulation, total chlorophyll, phosphorus content, and total soluble protein. Oxidative stress was profoundly induced dose-dependently and was highest at 2 mg ml-1 or g-1 of Al3+ and nano-Al2O3 when superoxide radical formation, proline induction, activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (GPX), and glutathione reductase (GR) and membrane lipid peroxidation were measured. Aluminum toxicity was found higher in hydroponically grown maize compared to soil-grown maize. Forty days exposure in soil showed greater inhibition of maize growth compared to 20 days exposure. This study is significant in understanding the maize response to different Al types in soil and soil-free media.
Assuntos
Nanopartículas Metálicas , Zea mays , Alumínio/metabolismo , Alumínio/toxicidade , Nanopartículas Metálicas/toxicidade , Óxidos/metabolismo , Raízes de Plantas/metabolismo , Solo , Zea mays/metabolismoRESUMO
This study was designed to evaluate the effect of the selected pesticides [herbicides (metribuzin and glyphosate), insecticides (imidacloprid and thiamethoxam) and fungicides (hexaconazole, metalaxyl and kitazin)] at the recommended and the higher dose rates on plant growth promoting traits of Rhizobium sp. strain MRL3 isolated from lentil-nodules. Strain MRL3 was explicitly selected owing to its high pesticide-tolerance ability and substantial production of indole acetic acid, siderophores (salicylic acid and 2, 3 dihydroxy benzoic acid), exo-polysaccharides, HCN and ammonia. A trend of pesticide-concentration dependent progressive-decline for plant growth promoting properties of Rhizobium sp. strain MRL3 was observed excluding exo-polysaccharides which was regularly augmented on exceeding the concentration of each tested pesticide from the recommended dose. Commonly, the maximum toxicity to plant growth promoting traits of Rhizobium was shown by glyphosate, imidacloprid and hexaconazole at three times the recommended rate among herbicides, insecticides and fungicides, respectively.
Assuntos
Fungicidas Industriais/toxicidade , Herbicidas/toxicidade , Inseticidas/toxicidade , Lens (Planta)/microbiologia , Rhizobium/efeitos dos fármacos , Poluentes do Solo/toxicidade , Relação Dose-Resposta a Droga , Lens (Planta)/crescimento & desenvolvimento , Rhizobium/metabolismo , Sideróforos/metabolismoRESUMO
The aim of this study was to investigate the toxicity of herbicides (metribuzin and glyphosate), insecticides (imidacloprid and thiamethoxam) and fungicides (hexaconazole, metalaxyl and kitazin) at the recommended and the higher dose rates on plant growth promoting activities of Bradyrhizobium sp. under in vitro conditions. The Bradyrhizobium sp. strain MRM6 was isolated from nodules of greengram plants. Pesticide-concentration dependent progressive-decline was observed in plant growth promoting traits of the strain MRM6 apart from exo-polysaccharides which increased consistently on increasing pesticide concentrations. Generally, the highest toxicity to plant growth promoting characteristics of the Bradyrhizobium sp. strain MRM6 was observed when the strain MRM6 was grown with three times the recommended field rates of glyphosate, imidacloprid and hexaconazole.
Assuntos
Bradyrhizobium/efeitos dos fármacos , Fungicidas Industriais/toxicidade , Herbicidas/toxicidade , Inseticidas/toxicidade , Alanina/análogos & derivados , Alanina/toxicidade , Bradyrhizobium/isolamento & purificação , Relação Dose-Resposta a Droga , Fabaceae/microbiologia , Glicina/análogos & derivados , Glicina/toxicidade , Imidazóis/toxicidade , Neonicotinoides , Nitrocompostos/toxicidade , Compostos Organotiofosforados/toxicidade , Oxazinas/toxicidade , Simbiose , Tiametoxam , Tiazóis/toxicidade , Triazinas/toxicidade , Triazóis/toxicidade , GlifosatoRESUMO
Sweet sorghum [Sorghum bicolor (L.) Moench] is a highly productive, gluten-free cereal crop plant that can be used as an alternative energy resource, human food, and livestock feed or for biofuel-ethanol production. Phosphate fertilization is a common practice to optimize sorghum yield but because of high cost, environmental hazards, and soil fertility reduction, the use of chemical P fertilizer is discouraged. Due to this, the impetus to search for an inexpensive and eco-friendly microbiome as an alternative to chemical P biofertilizer has been increased. Microbial formulations, especially phosphate solubilizing microbiome (PSM) either alone or in synergism with other rhizobacteria, modify the soil nutrient pool and augment the growth, P nutrition, and yield of sorghum. The use of PSM in sorghum disease management reduces the dependence on pesticides employed to control the phytopathogens damage. The role of PSM in the sorghum cultivation system is, however, relatively unresearched. In this manuscript, the diversity and the strategies adopted by PSM to expedite sorghum yield are reviewed, including the nutritional importance of sorghum in human health and the mechanism of P solubilization by PSM. Also, the impact of solo or composite inoculations of biological enhancers (PSM) with nitrogen fixers or arbuscular mycorrhizal fungi is explained. The approaches employed by PSM to control sorghum phytopathogens are highlighted. The simultaneous bio-enhancing and biocontrol activity of the PS microbiome provides better options for the replacement of chemical P fertilizers and pesticide application in sustainable sorghum production practices.
RESUMO
Abiotic stresses, including low-temperature environments, adversely affect the structure, composition, and physiological activities of soil microbiomes. Also, low temperatures disturb physiological and metabolic processes, leading to major crop losses worldwide. Extreme cold temperature habitats are, however, an interesting source of psychrophilic and psychrotolerant phosphate solubilizing bacteria (PSB) that can ameliorate the low-temperature conditions while maintaining their physiological activities. The production of antifreeze proteins and expression of stress-induced genes at low temperatures favors the survival of such organisms during cold stress. The ability to facilitate plant growth by supplying a major plant nutrient, phosphorus, in P-deficient soil is one of the novel functional properties of cold-tolerant PSB. By contrast, plants growing under stress conditions require cold-tolerant rhizosphere bacteria to enhance their performance. To this end, the use of psychrophilic PSB formulations has been found effective in yield optimization under temperature-stressed conditions. Most of the research has been done on microbial P biofertilizers impacting plant growth under normal cultivation practices but little attention has been paid to the plant growth-promoting activities of cold-tolerant PSB on crops growing in low-temperature environments. This scientific gap formed the basis of the present manuscript and explains the rationale for the introduction of cold-tolerant PSB in competitive agronomic practices, including the mechanism of solubilization/mineralization, release of biosensor active biomolecules, molecular engineering of PSB for increasing both P solubilizing/mineralizing efficiency, and host range. The impact of extreme cold on the physiological activities of plants and how plants overcome such stresses is discussed briefly. It is time to enlarge the prospects of psychrophilic/psychrotolerant phosphate biofertilizers and take advantage of their precious, fundamental, and economical but enormous plant growth augmenting potential to ameliorate stress and facilitate crop production to satisfy the food demands of frighteningly growing human populations. The production and application of cold-tolerant P-biofertilizers will recuperate sustainable agriculture in cold adaptive agrosystems.
RESUMO
Fungicides among agrochemicals are consistently used in high throughput agricultural practices to protect plants from damaging impact of phytopathogens and hence to optimize crop production. However, the negative impact of fungicides on composition and functions of soil microbiota, plants and via food chain, on human health is a matter of grave concern. Considering such agrochemical threats, the present study was undertaken to know that how fungicide-tolerant symbiotic bacterium, Mesorhizobium ciceri affects the Cicer arietinum crop while growing in kitazin (KITZ) stressed soils under greenhouse conditions. Both in vitro and soil systems, KITZ imparted deleterious impacts on C. arietinum as a function of dose. The three-time more of normal rate of KITZ dose detrimentally but maximally reduced the germination efficiency, vigor index, dry matter production, symbiotic features, leaf pigments and seed attributes of C. arietinum. KITZ-induced morphological alterations in root tips, oxidative damage and cell death in root cells of C. arietinum were visible under scanning electron microscope (SEM). M. ciceri tolerated up to 2400 µg mL-1 of KITZ, synthesized considerable amounts of bioactive molecules including indole-3-acetic-acid (IAA), 1-aminocyclopropane 1-carboxylate (ACC) deaminase, siderophores, exopolysaccharides (EPS), hydrogen cyanide, ammonia, and solubilised inorganic phosphate even in fungicide-stressed media. Following application to soil, M. ciceri improved performance of C. arietinum and enhanced dry biomass production, yield, symbiosis and leaf pigments even in a fungicide-polluted environment. At 96 µg KITZ kg-1 soil, M. ciceri maximally and significantly (p ≤ 0.05) augmented the length of plants by 41%, total dry matter by 18%, carotenoid content by 9%, LHb content by 21%, root N by 9%, shoot P by 11% and pod yield by 15% over control plants. Additionally, the nodule bacterium M. ciceri efficiently colonized the plant rhizosphere/rhizoplane and considerably decreased the levels of stressor molecules (proline and malondialdehyde) and antioxidant defence enzymes viz. ascorbate peroxidise (APX), guaiacol peroxidise (GPX), catalase (CAT) and peroxidises (POD) of C. arietinum plants when inoculated in soil. The symbiotic strain effectively colonized the plant rhizosphere/rhizoplane. Conclusively, the ability to endure higher fungicide concentrations, capacity to secrete plant growth modulators even under fungicide pressure, and inherent features to lower the level of proline and plant defence enzymes makes this M. ciceri as a superb choice for augmenting the safe production of C. arietinum even under fungicide-contaminated soils.