Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Cell Physiol ; 310(11): C1010-23, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27076617

RESUMO

Bile acids (BAs) play a complex role in colonic fluid secretion. We showed that dihydroxy BAs, but not the monohydroxy BA lithocholic acid (LCA), stimulate Cl(-) secretion in human colonic T84 cells (Ao M, Sarathy J, Domingue J, Alrefai WA, Rao MC. Am J Physiol Cell Physiol 305: C447-C456, 2013). In this study, we explored the effect of LCA on the action of other secretagogues in T84 cells. While LCA (50 µM, 15 min) drastically (>90%) inhibited FSK-stimulated short-circuit current (Isc), it did not alter carbachol-stimulated Isc LCA did not alter basal Isc, transepithelial resistance, cell viability, or cytotoxicity. LCA's inhibitory effect was dose dependent, acted faster from the apical membrane, rapid, and not immediately reversible. LCA also prevented the Isc stimulated by the cAMP-dependent secretagogues 8-bromo-cAMP, lubiprostone, or chenodeoxycholic acid (CDCA). The LCA inhibitory effect was BA specific, since CDCA, cholic acid, or taurodeoxycholic acid did not alter FSK or carbachol action. While LCA alone had no effect on intracellular cAMP concentration ([cAMP]i), it decreased FSK-stimulated [cAMP]i by 90%. Although LCA caused a small increase in intracellular Ca(2+) concentration ([Ca(2+)]i), chelation by BAPTA-AM did not reverse LCA's effect on Isc LCA action does not appear to involve known BA receptors, farnesoid X receptor, vitamin D receptor, muscarinic acetylcholine receptor M3, or bile acid-specific transmembrane G protein-coupled receptor 5. LCA significantly increased ERK1/2 phosphorylation, which was completely abolished by the MEK inhibitor PD-98059. Surprisingly PD-98059 did not reverse LCA's effect on Isc Finally, although LCA had no effect on basal Isc, nystatin permeabilization studies showed that LCA both stimulates an apical cystic fibrosis transmembrane conductance regulator Cl(-) current and inhibits a basolateral K(+) current. In summary, 50 µM LCA greatly inhibits cAMP-stimulated Cl(-) secretion, making low doses of LCA of potential therapeutic interest for diarrheal diseases.


Assuntos
Antidiarreicos/farmacologia , Cloretos/metabolismo , Colo/efeitos dos fármacos , AMP Cíclico/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/agonistas , Células Epiteliais/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Secreções Intestinais/efeitos dos fármacos , Ácido Litocólico/farmacologia , Linhagem Celular , Colo/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Relação Dose-Resposta a Droga , Células Epiteliais/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Secreções Intestinais/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio/efeitos dos fármacos , Canais de Potássio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
2.
Physiol Rep ; 5(10): e13294, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28554966

RESUMO

Gastrointestinal epithelial barrier loss due to tight junction (TJ) dysfunction and bile acid-induced diarrhea are common in patients with inflammatory diseases. Although excess colonic bile acids are known to alter mucosal permeability, few studies have compared the effects of specific bile acids on TJ function. We report that the primary bile acid, chenodeoxycholic acid (CDCA), and its 7α-dehydroxylated derivative, lithocholic acid (LCA) have opposite effects on epithelial integrity in human colonic T84 cells. CDCA decreased transepithelial barrier resistance (pore) and increased paracellular 10 kDa dextran permeability (leak), effects that were enhanced by proinflammatory cytokines (PiC [ng/mL]: TNFα[10] + IL-1ß[10] + IFNγ[30]). CDCA reversed the cation selectivity of the monolayer and decreased intercellular adhesion. In contrast, LCA alone did not alter any of these parameters, but attenuated the effects of CDCA ± PiC on paracellular permeability. CDCA, but not PiC, decreased occludin and not claudin-2 protein expression; CDCA also decreased occludin localization. LCA ± CDCA had no effects on occludin or claudin expression/localization. While PiC and CDCA increased IL-8 production, LCA reduced both basal and PiC ± CDCA-induced IL-8 production. TNFα + IL1ß increased IFNγ, which was enhanced by CDCA and attenuated by LCA CDCA±PiC increased production of reactive oxygen species (ROS) that was attenuated by LCA Finally, scavenging ROS attenuated CDCA's leak, but not pore actions, and LCA enhanced this effect. Thus, in T84 cells, CDCA plays a role in the inflammatory response causing barrier dysfunction, while LCA restores barrier integrity. Understanding the interplay of LCA, CDCA, and PiC could lead to innovative therapeutic strategies for inflammatory and diarrheal diseases.


Assuntos
Ácidos e Sais Biliares/metabolismo , Colo/metabolismo , Inflamação/metabolismo , Mucosa Intestinal/metabolismo , Junções Íntimas/metabolismo , Apoptose , Adesão Celular , Linhagem Celular Tumoral , Ácido Quenodesoxicólico/metabolismo , Citocinas/metabolismo , Humanos , Ácido Litocólico/metabolismo , Estresse Oxidativo , Permeabilidade , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA