Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Int J Mol Sci ; 25(13)2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-39000018

RESUMO

Consecutive interactions of 3Na+ or 1Ca2+ with the Na+/Ca2+ exchanger (NCX) result in an alternative exposure (access) of the cytosolic and extracellular vestibules to opposite sides of the membrane, where ion-induced transitions between the outward-facing (OF) and inward-facing (IF) conformational states drive a transport cycle. Here, we investigate sub-state populations of apo and ion-bound species in the OF and IF states by analyzing detergent-solubilized and nanodisc-reconstituted preparations of NCX_Mj with 19F-NMR. The 19F probe was covalently attached to the cysteine residues at entry locations of the cytosolic and extracellular vestibules. Multiple sub-states of apo and ion-bound species were observed in nanodisc-reconstituted (but not in detergent-solubilized) NCX_Mj, meaning that the lipid-membrane environment preconditions multiple sub-state populations toward the OF/IF swapping. Most importantly, ion-induced sub-state redistributions occur within each major (OF or IF) state, where sub-state interconversions may precondition the OF/IF swapping. In contrast with large changes in population redistributions, the sum of sub-state populations within each inherent state (OF or IF) remains nearly unchanged upon ion addition. The present findings allow the further elucidation of structure-dynamic modules underlying ion-induced conformational changes that determine a functional asymmetry of ion access/translocation at opposite sides of the membrane and ion transport rates concurring physiological demands.


Assuntos
Detergentes , Conformação Proteica , Trocador de Sódio e Cálcio , Detergentes/química , Trocador de Sódio e Cálcio/química , Trocador de Sódio e Cálcio/metabolismo , Trocador de Sódio e Cálcio/genética , Íons/química , Nanoestruturas/química , Solubilidade , Animais , Espectroscopia de Ressonância Magnética/métodos
2.
Int J Mol Sci ; 24(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36613523

RESUMO

The plasma-membrane homeostasis Na+/Ca2+ exchangers (NCXs) mediate Ca2+ extrusion/entry to dynamically shape Ca2+ signaling/in biological systems ranging from bacteria to humans. The NCX gene orthologs, isoforms, and their splice variants are expressed in a tissue-specific manner and exhibit nearly 104-fold differences in the transport rates and regulatory specificities to match the cell-specific requirements. Selective pharmacological targeting of NCX variants could benefit many clinical applications, although this intervention remains challenging, mainly because a full-size structure of eukaryotic NCX is unavailable. The crystal structure of the archaeal NCX_Mj, in conjunction with biophysical, computational, and functional analyses, provided a breakthrough in resolving the ion transport mechanisms. However, NCX_Mj (whose size is nearly three times smaller than that of mammalian NCXs) cannot serve as a structure-dynamic model for imitating high transport rates and regulatory modules possessed by eukaryotic NCXs. The crystal structures of isolated regulatory domains (obtained from eukaryotic NCXs) and their biophysical analyses by SAXS, NMR, FRET, and HDX-MS approaches revealed structure-based variances of regulatory modules. Despite these achievements, it remains unclear how multi-domain interactions can decode and integrate diverse allosteric signals, thereby yielding distinct regulatory outcomes in a given ortholog/isoform/splice variant. This article summarizes the relevant issues from the perspective of future developments.


Assuntos
Células Eucarióticas , Trocador de Sódio e Cálcio , Animais , Humanos , Espalhamento a Baixo Ângulo , Difração de Raios X , Isoformas de Proteínas/metabolismo , Transporte de Íons/fisiologia , Células Eucarióticas/metabolismo , Trocador de Sódio e Cálcio/genética , Trocador de Sódio e Cálcio/metabolismo , Cálcio/metabolismo , Mamíferos/metabolismo
3.
Mol Pharmacol ; 94(6): 1391-1400, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30275041

RESUMO

Bisphosphonates are widely used for treating osteoporosis, a common disorder in which bone strength is reduced, increasing the risk for fractures. Rarely, bisphosphonates can paradoxically lead to atypical fractures occurring spontaneously or with trivial trauma. Recently, a novel missense mutation (D188Y) in the GGPS1 gene, encoding for geranylgeranyl diphosphate synthase (GGPPS), was associated with bisphosphonate-induced atypical fractures. However, the molecular basis for GGPPS involvement in this devastating condition remains elusive. Here, we show that while maintaining an overall unperturbed global enzyme structure, the D188Y mutation leads to ∼4-fold catalytic activity decrease. Furthermore, GGPPS-D188Y is unable to support cross-species complementation, highlighting the functional significance of the reduced catalytic activity observed in vitro. We next determined the crystal structure of apo-GGPPS-D188Y, revealing that while Y188 does not alter the protein fold, its bulky side chain sterically interferes with substrate binding. In agreement, we show that GGPPS-D188Y exhibits ∼3-fold reduction in the binding affinity of zoledronate, a commonly used bisphosphonate. However, inhibition of the mutated enzyme by zoledronate, in pharmacologically relevant concentrations, is maintained. Finally, we determined the crystal structure of zoledronate-bound GGPPS-D188Y, revealing large ligand-induced binding pocket rearrangements, revising the previous model for GGPPS-bisphosphonate interactions. In conclusion, we propose that among heterozygotes residual GGPPS activity is sufficient to support physiologic cellular function, concealing any pathologic phenotype. However, under bisphosphonate treatment, GGPPS activity is reduced below a crucial threshold for osteoclast function, leading to impaired bone remodeling and increased susceptibility to atypical fractures.


Assuntos
Difosfonatos/efeitos adversos , Farnesiltranstransferase/genética , Fraturas Ósseas/induzido quimicamente , Fraturas Ósseas/genética , Cristalografia por Raios X/métodos , Dimetilaliltranstransferase/genética , Heterozigoto , Humanos , Modelos Moleculares , Mutação de Sentido Incorreto/genética , Ácido Zoledrônico/farmacologia
4.
J Biol Chem ; 292(25): 10753-10754, 2017 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-28646126

RESUMO

Palmitoylation is a critical post-translational modification that anchors proteins to, and regulates transport across, the lipid bilayer. Palmitoylation enzymes have been assumed to select their substrates based on a protein's primary sequence, but a consensus sequence has been slow to emerge. A study of the sodium/calcium exchanger now suggests that secondary structure may hold the key to understanding the determinants of this modification.


Assuntos
Bicamadas Lipídicas/metabolismo , Lipoilação/fisiologia , Processamento de Proteína Pós-Traducional/fisiologia , Trocador de Sódio e Cálcio/metabolismo , Animais , Humanos , Domínios Proteicos , Estrutura Secundária de Proteína , Trocador de Sódio e Cálcio/genética
5.
J Biol Chem ; 292(29): 12311-12323, 2017 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-28572509

RESUMO

Na+/Ca2+ exchanger (NCX) proteins operate through the alternating access mechanism, where the ion-binding pocket is exposed in succession either to the extracellular or the intracellular face of the membrane. The archaeal NCX_Mj (Methanococcus jannaschii NCX) system was used to resolve the backbone dynamics in the inward-facing (IF) and outward-facing (OF) states by analyzing purified preparations of apo- and ion-bound forms of NCX_Mj-WT and its mutant, NCX_Mj-5L6-8. First, the exposure of extracellular and cytosolic vestibules to the bulk phase was evaluated as the reactivity of single cysteine mutants to a fluorescent probe, verifying that NCX_Mj-WT and NCX_Mj-5L6-8 preferentially adopt the OF and IF states, respectively. Next, hydrogen-deuterium exchange-mass spectrometry (HDX-MS) was employed to analyze the backbone dynamics profiles in proteins, preferentially adopting the OF (WT) and IF (5L6-8) states either in the presence or absence of ions. Characteristic differences in the backbone dynamics were identified between apo NCX_Mj-WT and NCX_Mj-5L6-8, thereby underscoring specific conformational patterns owned by the OF and IF states. Saturating concentrations of Na+ or Ca2+ specifically modify HDX patterns, revealing that the ion-bound/occluded states are much more stable (rigid) in the OF than in the IF state. Conformational differences observed in the ion-occluded OF and IF states can account for diversifying the ion-release dynamics and apparent affinity (Km ) at opposite sides of the membrane, where specific structure-dynamic elements can effectively match the rates of bidirectional ion movements at physiological ion concentrations.


Assuntos
Proteínas Arqueais/química , Cálcio/metabolismo , Membrana Celular/química , Methanocaldococcus/metabolismo , Modelos Moleculares , Trocador de Sódio e Cálcio/química , Sódio/metabolismo , Substituição de Aminoácidos , Apoproteínas/química , Apoproteínas/genética , Apoproteínas/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Sítios de Ligação , Biologia Computacional , Cisteína/química , Medição da Troca de Deutério , Cinética , Ligantes , Mutagênese Insercional , Mutação , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Trocador de Sódio e Cálcio/genética , Trocador de Sódio e Cálcio/metabolismo
6.
Exp Physiol ; 103(2): 157-169, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29210126

RESUMO

NEW FINDINGS: What is the topic of this review? This paper overviews the links between Ca2+ and Na+ signalling in various types of cells. What advances does it highlight? This paper highlights the general importance of ionic signalling and overviews the molecular mechanisms linking Na+ and Ca2+ dynamics. In particular, the narrative focuses on the molecular physiology of plasmalemmal and mitochondrial Na+ -Ca2+ exchangers and plasmalemmal transient receptor potential channels. Functional consequences of Ca2+ and Na+ signalling for co-ordination of neuronal activity with astroglial homeostatic pathways fundamental for synaptic transmission are discussed. ABSTRACT: Transmembrane ionic gradients, which are an indispensable feature of life, are used for generation of cytosolic ionic signals that regulate a host of cellular functions. Intracellular signalling mediated by Ca2+ and Na+ is tightly linked through several molecular pathways that generate Ca2+ and Na+ fluxes and are in turn regulated by both ions. Transient receptor potential (TRP) channels bridge endoplasmic reticulum Ca2+ release with generation of Na+ and Ca2+ currents. The plasmalemmal Na+ -Ca2+ exchanger (NCX) flickers between forward and reverse mode to co-ordinate the influx and efflux of both ions with membrane polarization and cytosolic ion concentrations. The mitochondrial calcium uniporter channel (MCU) and mitochondrial Na+ -Ca2+ exchanger (NCLX) mediate Ca2+ entry into and release from this organelle and couple cytosolic Ca2+ and Na+ fluctuations with cellular energetics. Cellular Ca2+ and Na+ signalling controls numerous functional responses and, in the CNS, provides for fast regulation of astroglial homeostatic cascades that are crucial for maintenance of synaptic transmission.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Mitocôndrias/metabolismo , Sódio/metabolismo , Animais , Retículo Endoplasmático/metabolismo , Homeostase/fisiologia , Humanos
7.
FASEB J ; 30(3): 1356-66, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26644350

RESUMO

Tissue-specific splice variants of Na(+)/Ca(2+) exchangers contain 2 Ca(2+)-binding regulatory domains (CBDs), CBD1 and CBD2. Ca(2+) interaction with CBD1 activates sodium-calcium exchangers (NCXs), and Ca(2+) binding to CBD2 alleviates Na(+)-dependent inactivation. A combination of mutually exclusive (A, B) and cassette (C-F) exons in CBD2 raises functionally diverse splice variants through unknown mechanisms. Here, the effect of exons on CBDs backbone dynamics were investigated in the 2-domain tandem (CBD12) of the brain, kidney, and cardiac splice variants by using hydrogen-deuterium exchange mass spectrometry and stopped-flow techniques. Mutually exclusive exons stabilize interdomain interactions in the apoprotein, which primarily predefines the extent of responses to Ca(2+) binding. Deuterium uptake levels were up to 20% lower in the cardiac vs. the brain CBD12, reveling that elongation of the CBD2 FG loop by cassette exons rigidifies the interdomain Ca(2+) salt bridge at the 2-domain interface, which secondarily modulates the Ca(2+)-bound states. In matching splice variants, the extent of Ca(2+)-induced rigidification correlates with decreased (up to 10-fold) Ca(2+) off rates, where the cardiac CBD12 exhibits the slowest Ca(2+) off rates. Collectively, structurally disordered/dynamic segments at mutually exclusive and cassette exons have local and distant effects on the folded structures nearby the Ca(2+) binding sites, which may serve as a structure-dynamic basis for splicing-dependent regulation of NCX.


Assuntos
Processamento Alternativo/genética , Variação Genética/genética , Trocador de Sódio e Cálcio/genética , Animais , Sítios de Ligação/genética , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Medição da Troca de Deutério/métodos , Cães , Éxons/genética , Transporte de Íons/genética , Ligação Proteica/genética , Estrutura Terciária de Proteína , Sódio/metabolismo
8.
Protein Expr Purif ; 132: 138-142, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28167250

RESUMO

Protein asparagine (N)-linked glycosylation is a post-translational modification that occurs in the endoplasmic reticulum; it plays an important role in protein folding, oligomerization, quality control, sorting, and transport. Accordingly, disorders of glycosylation may affect practically every organ system. Dehydrodolichyl diphosphate synthase (DHDDS) is an eukaryotic cis prenyltransferase (cis-PT) that catalyzes chain elongation of farnesyl diphosphate via multiple condensations with isopentenyl diphosphate to form dehydrodolichyl diphosphate, a precursor for the glycosyl carrier dolichylpyrophophate involved in N-linked glycosylation. Mutations in DHDDS were shown to result in retinitis pigmentosa, ultimately leading to blindness, but the exact molecular mechanism by which the mutations affect DHDDS function remains elusive. In addition, bacterial cis-PT homologs are involved in bacterial wall synthesis and are therefore potential targets for new antibacterial agents. However, as eukaryotic cis-PT were not thoroughly characterized structurally and functionally, rational design of prokaryotic cis-PT specific drugs is currently impossible. Here, we present a simple protocol for purification of functionally active human DHDDS under non-denaturating conditions using a codon-optimized construct. The purified protein forms a stable homodimer, similar to its bacterial homologs, and shows time- and substrate-dependent activity. Purification of this protein requires the presence of a detergent for protein solubility. The protocol described here may be utilized for the overexpression of other eukaryotic cis-PT. Future structural and functional studies of the recombinant DHDDS may shed light on the mechanisms underlying DHDDS-related retinitis pigmentosa and lead to novel therapeutic approaches.


Assuntos
Alquil e Aril Transferases , Escherichia coli/metabolismo , Multimerização Proteica , Alquil e Aril Transferases/biossíntese , Alquil e Aril Transferases/química , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/isolamento & purificação , Escherichia coli/genética , Humanos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Retinose Pigmentar/genética , Retinose Pigmentar/metabolismo
9.
Adv Exp Med Biol ; 981: 41-58, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29594857

RESUMO

Mammalian Na+/Ca2+ exchangers (NCX1, NCX2, and NCX3) and their splice variants are expressed in a tissue-specific manner and are regulated by Ca2+ binding CBD1 and CBD2 domains. NCX2 does not undergo splicing, whereas in NCX1 and NCX3, the splicing segment (with mutually exclusive and cassette exons) is located in CBD2. Ca2+ binding to CBD1 results in Ca2+-dependent tethering of CBDs through the network of interdomain salt-bridges, which is associated with NCX activation, whereas a slow dissociation of "occluded" Ca2+ inactivates NCX. Although NCX variants share a common structural basis for Ca2+-dependent tethering of CBDs, the Ca2+ off-rates of occluded Ca2+ vary up to 50-fold, depending on the exons assembly. The Ca2+-dependent tethering of CBDs rigidifies the interdomain movements of CBDs without any significant changes in the CBDs' alignment; consequently, more constraining conformational states become more populated in the absence of global conformational changes. Although this Ca2+-dependent "population shift" is a common mechanism among NCX variants, the strength and span of backbone rigidification from the C-terminal of CBD1 to the C-terminal of CBD2 is exon dependent. The mutually exclusive exons differentially stabilize/destabilize the backbone dynamics of Ca2+-bound CBDs in NCX1 and NCX3 variants, whereas the cassette exons control the stability of the interdomain linker. The combined effects of mutually exclusive and cassette exons permit a fine adjustment of two different regulatory pathways: the Ca2+-dependent activation (controlled by CBD1) and the Ca2+-dependent alleviation of Na+-induced inactivation (controlled by CBD2). Exon-controlled dynamic features match with cell-specific regulatory requirements in a given variant.


Assuntos
Trocador de Sódio e Cálcio/química , Regulação Alostérica , Animais , Cálcio , Humanos , Domínios Proteicos , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Trocador de Sódio e Cálcio/genética , Trocador de Sódio e Cálcio/metabolismo , Relação Estrutura-Atividade
10.
Proc Natl Acad Sci U S A ; 111(50): E5354-62, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25468964

RESUMO

Na(+)/Ca(2+) exchangers (NCXs) are ubiquitous membrane transporters with a key role in Ca(2+) homeostasis and signaling. NCXs mediate the bidirectional translocation of either Na(+) or Ca(2+), and thus can catalyze uphill Ca(2+) transport driven by a Na(+) gradient, or vice versa. In a major breakthrough, a prokaryotic NCX homolog (NCX_Mj) was recently isolated and its crystal structure determined at atomic resolution. The structure revealed an intriguing architecture consisting of two inverted-topology repeats, each comprising five transmembrane helices. These repeats adopt asymmetric conformations, yielding an outward-facing occluded state. The crystal structure also revealed four putative ion-binding sites, but the occupancy and specificity thereof could not be conclusively established. Here, we use molecular-dynamics simulations and free-energy calculations to identify the ion configuration that best corresponds to the crystallographic data and that is also thermodynamically optimal. In this most probable configuration, three Na(+) ions occupy the so-called Sext, SCa, and Sint sites, whereas the Smid site is occupied by one water molecule and one H(+), which protonates an adjacent aspartate side chain (D240). Experimental measurements of Na(+)/Ca(2+) and Ca(2+)/Ca(2+) exchange by wild-type and mutagenized NCX_Mj confirm that transport of both Na(+) and Ca(2+) requires protonation of D240, and that this side chain does not coordinate either ion at Smid. These results imply that the ion exchange stoichiometry of NCX_Mj is 3:1 and that translocation of Na(+) across the membrane is electrogenic, whereas transport of Ca(2+) is not. Altogether, these findings provide the basis for further experimental and computational studies of the conformational mechanism of this exchanger.


Assuntos
Methanocaldococcus/genética , Modelos Moleculares , Trocador de Sódio e Cálcio/química , Trocador de Sódio e Cálcio/metabolismo , Sódio/metabolismo , Escherichia coli , Vetores Genéticos/genética , Concentração de Íons de Hidrogênio , Simulação de Dinâmica Molecular , Conformação Proteica , Trocador de Sódio e Cálcio/genética , Termodinâmica
11.
Biochemistry ; 55(12): 1673-6, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-26958982

RESUMO

Members of the Ca(2+)/cation exchanger superfamily (Ca(2+)/CA) share structural similarities (including highly conserved ion-coordinating residues) while exhibiting differential selectivity for Ca(2+), Na(+), H(+), K(+), and Li(+). The archaeal Na(+)/Ca(2+) exchanger (NCX_Mj) and its mammalian orthologs are highly selective for Na(+), whereas the mitochondrial ortholog (NCLX) can transport either Li(+) or Na(+) in exchange with Ca(2+). Here, structure-based replacement of ion-coordinating residues in NCX_Mj resulted in a capacity for transporting either Na(+) or Li(+), similar to the case for NCLX. This engineered protein may serve as a model for elucidating the mechanisms underlying ion selectivity and ion-coupled alternating access in NCX and similar proteins.


Assuntos
Proteínas de Escherichia coli/química , Lítio/metabolismo , Engenharia de Proteínas/métodos , Trocador de Sódio e Cálcio/química , Trocador de Sódio e Cálcio/metabolismo , Sequência de Aminoácidos , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Transporte de Íons/fisiologia , Dados de Sequência Molecular , Trocador de Sódio e Cálcio/genética , Relação Estrutura-Atividade
12.
Biochem J ; 465(3): 489-501, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25387769

RESUMO

The Ca(2+)-dependent allosteric regulation of Na(+)/Ca(2+) exchanger (NCX) proteins represents Ca(2+) interaction with the cytosolic domains, CBD1 (calcium-binding domain 1) and CBD2, which is associated either with activation, inhibition or no response to regulatory Ca(2+) in a given splice variant. CBD1 contains a high affinity Ca(2+)-sensor (which is highly conserved among splice variants), whereas primary information upon Ca(2+) binding to CBD1 is modified by alternative splicing of CBD2, yielding the diverse regulatory responses to Ca(2+). To resolve the structure-dynamic determinants of splicing-dependent regulation, we tested two-domain tandem (CBD12) constructs possessing either positive, negative or no response to Ca(2+) using hydrogen-deuterium exchange MS (HDX-MS), SAXS, equilibrium 45Ca(2+) binding and stopped-flow kinetics. Taken together with previously resolved crystallographic structures of CBD12, the data revealed that Ca(2+) binding to CBD1 rigidifies the main-chain flexibility of CBD2 (but not of CBD1), whereas CBD2 stabilizes the apo-CBD1. Strikingly, the extent and strength of Ca(2+)-dependent rigidification of CBD2 is splice-variant dependent, where the main-chain rigidification spans from the Ca(2+)-binding sites of CBD1, through a helix of CBD2 (positioned at the domains' interface) up to the tip of CBD2 [>50 Å (1 Å = 0.1 nm)] or alternatively, it stops at the CBD2 helix in the splice variant exhibiting an inhibitory response to regulatory Ca(2+). These results provide a structure-dynamic basis by which alternative splicing diversifies the regulatory responses to Ca(2+) as well as controls the extent and strength of allosteric signal propagation over long distance.


Assuntos
Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transdução de Sinais/fisiologia , Trocador de Sódio e Cálcio/genética , Trocador de Sódio e Cálcio/metabolismo , Regulação Alostérica/fisiologia , Sequência de Aminoácidos , Animais , Cálcio/metabolismo , Medição da Troca de Deutério , Cães , Dados de Sequência Molecular , Ligação Proteica/fisiologia , Isoformas de Proteínas/química , Estrutura Secundária de Proteína , Trocador de Sódio e Cálcio/química , Relação Estrutura-Atividade , Difração de Raios X
13.
Proc Natl Acad Sci U S A ; 110(18): E1685-94, 2013 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-23589888

RESUMO

Proper expression and function of the cardiac pacemaker is a critical feature of heart physiology. Two main mechanisms have been proposed: (i) the "voltage-clock," where the hyperpolarization-activated funny current If causes diastolic depolarization that triggers action potential cycling; and (ii) the "Ca(2+) clock," where cyclical release of Ca(2+) from Ca(2+) stores depolarizes the membrane during diastole via activation of the Na(+)-Ca(2+) exchanger. Nonetheless, these mechanisms remain controversial. Here, we used human embryonic stem cell-derived cardiomyocytes (hESC-CMs) to study their autonomous beating mechanisms. Combined current- and voltage-clamp recordings from the same cell showed the so-called "voltage and Ca(2+) clock" pacemaker mechanisms to operate in a mutually exclusive fashion in different cell populations, but also to coexist in other cells. Blocking the "voltage or Ca(2+) clock" produced a similar depolarization of the maximal diastolic potential (MDP) that culminated by cessation of action potentials, suggesting that they converge to a common pacemaker component. Using patch-clamp recording, real-time PCR, Western blotting, and immunocytochemistry, we identified a previously unrecognized Ca(2+)-activated intermediate K(+) conductance (IK(Ca), KCa3.1, or SK4) in young and old stage-derived hESC-CMs. IK(Ca) inhibition produced MDP depolarization and pacemaker suppression. By shaping the MDP driving force and exquisitely balancing inward currents during diastolic depolarization, IK(Ca) appears to play a crucial role in human embryonic cardiac automaticity.


Assuntos
Células-Tronco Embrionárias/citologia , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Nó Sinoatrial/citologia , Nó Sinoatrial/metabolismo , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Linhagem Celular , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/metabolismo , Humanos , Modelos Cardiovasculares , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Pirazóis/farmacologia , Pirimidinas/farmacologia , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Nó Sinoatrial/efeitos dos fármacos , Tioureia/análogos & derivados , Tioureia/farmacologia
14.
Int J Mol Sci ; 17(11)2016 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-27879668

RESUMO

The membrane-bound sodium-calcium exchanger (NCX) proteins shape Ca2+ homeostasis in many cell types, thus participating in a wide range of physiological and pathological processes. Determination of the crystal structure of an archaeal NCX (NCX_Mj) paved the way for a thorough and systematic investigation of ion transport mechanisms in NCX proteins. Here, we review the data gathered from the X-ray crystallography, molecular dynamics simulations, hydrogen-deuterium exchange mass-spectrometry (HDX-MS), and ion-flux analyses of mutants. Strikingly, the apo NCX_Mj protein exhibits characteristic patterns in the local backbone dynamics at particular helix segments, thereby possessing characteristic HDX profiles, suggesting structure-dynamic preorganization (geometric arrangements of catalytic residues before the transition state) of conserved α1 and α2 repeats at ion-coordinating residues involved in transport activities. Moreover, dynamic preorganization of local structural entities in the apo protein predefines the status of ion-occlusion and transition states, even though Na⁺ or Ca2+ binding modifies the preceding backbone dynamics nearby functionally important residues. Future challenges include resolving the structural-dynamic determinants governing the ion selectivity, functional asymmetry and ion-induced alternating access. Taking into account the structural similarities of NCX_Mj with the other proteins belonging to the Ca2+/cation exchanger superfamily, the recent findings can significantly improve our understanding of ion transport mechanisms in NCX and similar proteins.


Assuntos
Cálcio/metabolismo , Isoformas de Proteínas/química , Trocador de Sódio e Cálcio/química , Sódio/metabolismo , Sequência de Aminoácidos , Archaea/química , Archaea/metabolismo , Cristalografia por Raios X , Medição da Troca de Deutério , Expressão Gênica , Homeostase , Humanos , Transporte de Íons , Simulação de Dinâmica Molecular , Mutação , Domínios Proteicos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Secundária de Proteína , Trocador de Sódio e Cálcio/genética , Trocador de Sódio e Cálcio/metabolismo , Relação Estrutura-Atividade
15.
J Biol Chem ; 288(32): 23141-9, 2013 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-23798674

RESUMO

In eukaryotic Na(+)/Ca(2+) exchangers (NCX) the Ca(2+) binding CBD1 and CBD2 domains form a two-domain regulatory tandem (CBD12). An allosteric Ca(2+) sensor (Ca3-Ca4 sites) is located on CBD1, whereas CBD2 contains a splice-variant segment. Recently, a Ca(2+)-driven interdomain switch has been described, albeit how it couples Ca(2+) binding with signal propagation remains unclear. To resolve the dynamic features of Ca(2+)-induced conformational transitions we analyze here distinct splice variants and mutants of isolated CBD12 at varying temperatures by using small angle x-ray scattering (SAXS) and equilibrium (45)Ca(2+) binding assays. The ensemble optimization method SAXS analysis demonstrates that the apo and Mg(2+)-bound forms of CBD12 are highly flexible, whereas Ca(2+) binding to the Ca3-Ca4 sites results in a population shift of conformational landscape to more rigidified states. Population shift occurs even under conditions in which no effect of Ca(2+) is observed on the globally derived Dmax (maximal interatomic distance), although under comparable conditions a normal [Ca(2+)]-dependent allosteric regulation occurs. Low affinity sites (Ca1-Ca2) of CBD1 do not contribute to Ca(2+)-induced population shift, but the occupancy of these sites by 1 mM Mg(2+) shifts the Ca(2+) affinity (Kd) at the neighboring Ca3-Ca4 sites from ∼ 50 nM to ∼ 200 nM and thus, keeps the primary Ca(2+) sensor (Ca3-Ca4 sites) within a physiological range. Thus, Ca(2+) binding to the Ca3-Ca4 sites results in a population shift, where more constraint conformational states become highly populated at dynamic equilibrium in the absence of global conformational transitions in CBD alignment.


Assuntos
Cálcio/química , Simulação de Dinâmica Molecular , Trocador de Sódio e Cálcio/química , Animais , Sítios de Ligação , Cálcio/metabolismo , Cães , Ligação Proteica , Estrutura Terciária de Proteína , Trocador de Sódio e Cálcio/genética , Trocador de Sódio e Cálcio/metabolismo
16.
Pflugers Arch ; 466(1): 43-60, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24281864

RESUMO

NCX proteins explore the electrochemical gradient of Na(+) to mediate Ca(2+)-fluxes in exchange with Na(+) either in the Ca(2+)-efflux (forward) or Ca(2+)-influx (reverse) mode, whereas the directionality depends on ionic concentrations and membrane potential. Mammalian NCX variants (NCX1-3) and their splice variants are expressed in a tissue-specific manner to modulate the heartbeat rate and contractile force, the brain's long-term potentiation and learning, blood pressure, renal Ca(2+) reabsorption, the immune response, neurotransmitter and insulin secretion, apoptosis and proliferation, mitochondrial bioenergetics, etc. Although the forward mode of NCX represents a major physiological module, a transient reversal of NCX may contribute to EC-coupling, vascular constriction, and synaptic transmission. Notably, the reverse mode of NCX becomes predominant in pathological settings. Since the expression levels of NCX variants are disease-related, the selective pharmacological targeting of tissue-specific NCX variants could be beneficial, thereby representing a challenge. Recent structural and biophysical studies revealed a common module for decoding the Ca(2+)-induced allosteric signal in eukaryotic NCX variants, although the phenotype variances in response to regulatory Ca(2+) remain unclear. The breakthrough discovery of the archaebacterial NCX structure may serve as a template for eukaryotic NCX, although the turnover rates of the transport cycle may differ ~10(3)-fold among NCX variants to fulfill the physiological demands for the Ca(2+) flux rates. Further elucidation of ion-transport and regulatory mechanisms may lead to selective pharmacological targeting of NCX variants under disease conditions.


Assuntos
Trocador de Sódio e Cálcio/metabolismo , Processamento Alternativo , Sequência de Aminoácidos , Animais , Sinalização do Cálcio , Acoplamento Excitação-Contração , Humanos , Dados de Sequência Molecular , Especificidade de Órgãos , Trocador de Sódio e Cálcio/química , Trocador de Sódio e Cálcio/genética
17.
Cell Calcium ; 119: 102867, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38422779

RESUMO

The membrane-abundant NCX proteins mediate an electrogenic ion exchange (3Na+:1Ca2+) in the Ca2+-exit or Ca2+-entry mode. The structurally related isoform/splice variants of NCX are expressed in a tissue-specific manner to shape Ca2+ signalling/homeostasis in diverse cell types. The lack of mammalian NCX structure hampered the functional and regulatory resolution of tissue-specific NCX variants and their pharmacological targeting. Recently unveiled Cryo-EM structures of human cardiac NCX1.1[1] and kidney NCX1.3[2] provide new opportunities for resolving structure/functional divergences among NCX variants and their pharmacological targeting.


Assuntos
Mamíferos , Proteínas de Membrana , Animais , Humanos , Microscopia Crioeletrônica , Isoformas de Proteínas/metabolismo , Mamíferos/metabolismo , Proteínas de Membrana/metabolismo , Descoberta de Drogas , Trocador de Sódio e Cálcio/metabolismo , Cálcio/metabolismo
18.
Commun Biol ; 7(1): 463, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627576

RESUMO

Cytosolic Ca2+ and Na+ allosterically regulate Na+/Ca2+ exchanger (NCX) proteins to vary the NCX-mediated Ca2+ entry/exit rates in diverse cell types. To resolve the structure-based dynamic mechanisms underlying the ion-dependent allosteric regulation in mammalian NCXs, we analyze the apo, Ca2+, and Na+-bound species of the brain NCX1.4 variant using hydrogen-deuterium exchange mass spectrometry (HDX-MS) and molecular dynamics (MD) simulations. Ca2+ binding to the cytosolic regulatory domains (CBD1 and CBD2) rigidifies the intracellular regulatory loop (5L6) and promotes its interaction with the membrane domains. Either Na+ or Ca2+ stabilizes the intracellular portions of transmembrane helices TM3, TM4, TM9, TM10, and their connecting loops (3L4 and 9L10), thereby exposing previously unappreciated regulatory sites. Ca2+ or Na+ also rigidifies the palmitoylation domain (TMH2), and neighboring TM1/TM6 bundle, thereby uncovering a structural entity for modulating the ion transport rates. The present analysis provides new structure-dynamic clues underlying the regulatory diversity among tissue-specific NCX variants.


Assuntos
Mamíferos , Trocador de Sódio e Cálcio , Animais , Estrutura Secundária de Proteína , Trocador de Sódio e Cálcio/química
19.
J Mol Cell Cardiol ; 59: 205-13, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23538132

RESUMO

The free Ca(2+) concentration within the mitochondrial matrix ([Ca(2+)]m) regulates the rate of ATP production and other [Ca(2+)]m sensitive processes. It is set by the balance between total Ca(2+) influx (through the mitochondrial Ca(2+) uniporter (MCU) and any other influx pathways) and the total Ca(2+) efflux (by the mitochondrial Na(+)/Ca(2+) exchanger and any other efflux pathways). Here we review and analyze the experimental evidence reported over the past 40years which suggest that in the heart and many other mammalian tissues a putative Na(+)/Ca(2+) exchanger is the major pathway for Ca(2+) efflux from the mitochondrial matrix. We discuss those reports with respect to a recent discovery that the protein product of the human FLJ22233 gene mediates such Na(+)/Ca(2+) exchange across the mitochondrial inner membrane. Among its many functional similarities to other Na(+)/Ca(2+) exchanger proteins is a unique feature: it efficiently mediates Li(+)/Ca(2+) exchange (as well as Na(+)/Ca(2+) exchange) and was therefore named NCLX. The discovery of NCLX provides both the identity of a novel protein and new molecular means of studying various unresolved quantitative aspects of mitochondrial Ca(2+) movement out of the matrix. Quantitative and qualitative features of NCLX are discussed as is the controversy regarding the stoichiometry of the NCLX Na(+)/Ca(2+) exchange, the electrogenicity of NCLX, the [Na(+)]i dependency of NCLX and the magnitude of NCLX Ca(2+) efflux. Metabolic features attributable to NCLX and the physiological implication of the Ca(2+) efflux rate via NCLX during systole and diastole are also briefly discussed.


Assuntos
Mitocôndrias/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Animais , Cálcio/metabolismo , Biologia Computacional , Humanos
20.
Adv Exp Med Biol ; 961: 35-48, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23224868

RESUMO

Allosteric activation of NCX involves the binding of cytosolic Ca(2+) to regulatory domains CBD1 and CBD2. Previous studies with isolated CBD12 and full-size NCX identified synergistic interactions between the two CBD domains that modify the affinity and kinetic properties of Ca(2+) sensing, although it remains unclear how the Ca(2+)-binding signal is decoded and propagates to transmembrane domains. Biophysical analyses (X-ray, SAXS, and stopped-flow techniques) of isolated preparations of CBD1, CBD2, and CBD12 have shown that Ca(2+) binding to Ca3-Ca4 sites of CBD1 results in interdomain tethering of CBDs through specific amino acids on CBD1 (Asp499 and Asp500) and CBD2 (Arg532 and Asp565). Mutant analyses of isolated CBDs suggest that the two-domain interface governs Ca(2+)-driven conformational alignment of CBDs, resulting in slow dissociation of Ca(2+) from CBD12, and thus, it mediates Ca(2+)-induced conformational transitions associated with allosteric signal transmission. Specifically, occupation of Ca3-Ca4 sites by Ca(2+) induces disorder-to-order transition owing to charge neutralization and coordination, thereby constraining CBD conformational freedom, rigidifying the NCX1 f-loop, and triggering allosteric signal transmission to the membrane domain. The newly found interdomain switch is highly conserved among NCX isoform/splice variants, although some additional structural motifs may shape the regulatory specificity of NCX variants.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/química , Cálcio/metabolismo , Trocador de Sódio e Cálcio/química , Trocador de Sódio e Cálcio/metabolismo , Regulação Alostérica/fisiologia , Motivos de Aminoácidos , Animais , Sítios de Ligação , Humanos , Cinética , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína , Trocador de Sódio e Cálcio/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA