Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Crit Rev Food Sci Nutr ; 61(19): 3160-3196, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32715740

RESUMO

The demand for food and beverage markets has increased as a result of population increase and in view of health awareness. The quality of products from food processing industry has to be improved economically by incorporating greener methodologies that enhances the safety and shelf life via the enzymes application while maintaining the essential nutritional qualities. The utilization of enzymes is rendered more favorable in industrial practices via the modification of their characteristics as attested by studies on enzyme immobilization pertaining to different stages of food and beverage processing; these studies have enhanced the catalytic activity, stability of enzymes and lowered the overall cost. However, the harsh conditions of industrial processes continue to increase the propensity of enzyme destabilization thus shortening their industrial lifespan namely enzyme leaching, recoverability, uncontrollable orientation and the lack of a general procedure. Innovative studies have strived to provide new tools and materials for the development of systems offering new possibilities for industrial applications of enzymes. Herein, an effort has been made to present up-to-date developments on enzyme immobilization and current challenges in the food and beverage industries in terms of enhancing the enzyme stability.


Assuntos
Enzimas Imobilizadas , Indústria Alimentícia , Estabilidade Enzimática , Enzimas Imobilizadas/metabolismo , Tecnologia
2.
Food Chem ; 325: 126890, 2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32387928

RESUMO

Developing an effective strategy to economically exploitation of pectinase, as one of the most widely used enzymes in food industry, is of utmost importance. Herein, pectinase was covalently immobilized onto polyethylene glycol grafted magnetic nanoparticles via trichlorotriazine with high loading efficiency. The generated immobilized pectinase showed enhanced catalytic activity, improved operational stability, and easily reusability. Thermal and pH stabilities studies showed improved performance of immobilized pectinase especially at extreme points. Compared to free enzyme, the noticeably lower Km and higher vmax values of immobilized pectinase demonstrated the enhanced catalytic activity of this enzyme after immobilization. Besides, the immobilized enzyme exhibited excellent reusability and stability by retaining up to 55 and 94% of its initial activity after 10 recycles and 125 days storage at 25 °C, respectively. Moreover, turbidity reduction occurred up to 59% in treated pineapple juice with immobilized pectinase, suggesting applicability of this system in juice and food-processing industries.

3.
Int J Biol Macromol ; 163: 402-413, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32629057

RESUMO

The covalent immobilization of xylanase onto the trichlorotriazine-functionalized polyethylene glycol grafted magnetic nanoparticles was exploited to generate a stabilized xylanase with improved catalytic activity and stability. Several tools were deployed to monitor the synthesis and immobilization processes, the loading capacity of nanocarrier, and the structural/chemical characteristics of the nanobiocatalyst. The optimum immobilization yield of xylanase was 260 mg xylanase/g nanocarrier in 20 mM phosphate buffer, pH 6.5 at 25 °C. A forward shift in optimum pH (6.5 to 7.5) and temperature (60 to 70 °C) of xylanase was observed after immobilization and the performance of immobilized enzyme was improved at high temperatures and pHs as affirmed by enhancement of vmax (2.69 to 6.01 U/mL) and decreases of Ea (14.61 to 13.41 kJ/mol). An increase in Km from 25.51 to 40.42 mg/mL was recorded after immobilization. The obtained results indicated augmented thermal stability of the immobilized xylanase. Notably, it showed good reusability as validated by retention of 50% of its initial activity after nine recycles in enrichment of the pineapple juice clarification after 120 min incubation at 50 °C, pH 4.5. The structural analysis revealed some partial changes in the α-helix and ß-sheet content of the enzyme after several recycles.


Assuntos
Enzimas Imobilizadas , Sucos de Frutas e Vegetais , Nanopartículas de Magnetita/química , Polietilenoglicóis/química , Triazinas/química , Xilosidases/química , Estabilidade Enzimática , Enzimas , Cinética , Análise Espectral , Temperatura , Termodinâmica
4.
PLoS One ; 13(1): e0190403, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29304063

RESUMO

It has already been demonstrated that a betasatellite associated with cotton leaf curl Multan virus (CLCuMB) can be used as a plant and animal gene delivery vector to plants. To examine the ability of CLCuMB as a tool to transfer coat protein genes of HIV-1 to plants, two recombinant CLCuMB constructs in which the CLCuMB ßC1 ORF was replaced with two HIV-1 genes fractions including a 696 bp DNA fragment related to the HIV-1 p24 gene and a 1501 bp DNA fragment related to the HIV-1 gag gene were constructed. Gag is the HIV-1 coat protein gene and p24 is a component of the particle capsid. Gag and p24 are used for vaccine production. Recombinant constructs were inoculated to Nicotiana glutinosa and N. benthamiana plants in the presence of an Iranian isolate of Tomato yellow leaf curl virus (TYLCV-[Ab]) as a helper virus. PCR analysis of inoculated plants indicated that p24 gene was successfully replicated in inoculated plants, but the gag gene was not. Real-time PCR and ELISA analysis of N. glutinosa and N. benthamiana plants containing the replicative forms of recombinant construct of CLCuMB/p24 indicated that p24 was expressed in these plants. This CLCuMB-based expression system offers the possibility of mass production of recombinant HIV-1 p24 protein in plants.


Assuntos
Begomovirus/genética , Proteínas do Capsídeo/genética , DNA Satélite/genética , Vetores Genéticos , HIV-1/genética , Begomovirus/patogenicidade , Ensaio de Imunoadsorção Enzimática , Fases de Leitura Aberta , Reação em Cadeia da Polimerase , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
5.
Mol Biotechnol ; 58(5): 362-72, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27041273

RESUMO

The betasatellite DNA associated with Cotton leaf curl Multan virus (CLCuMB) contains a single complementary-sense ORF, ßC1, which is a pathogenicity determinant. CLCuMB was able to replicate in plants in the presence of diverse helper geminiviruses, including Tomato leaf curl virus-Australia (TLCV-Au), Iranian isolate of Tomato yellow leaf curl virus (TYLCV-[Ab]), and Beet curly top virus (BCTV-Svr), and can be used as a plant gene delivery vector. To test the hypothesis that CLCuMB has the potential to act as an animal gene delivery vector, a specific insertion construct was produced by the introduction of a human B-cell lymphoma 2 (Bcl-2) cDNA into a mutant DNA of CLCuMB in which the ßC1 was deleted (ß∆C1). The recombinant ßΔC1-Bcl-2 construct was successfully replicated in tomato and tobacco plants in the presence of TLCV-Au, BCTV-Svr and TYLCV-[Ab]. Real-time PCR and Western blot analyses of plants containing the replicative forms of recombinant ßΔC1-Bcl-2 DNA showed that Bcl-2 gene was expressed in an acceptable level in these plants, indicating that ß∆C1 can be used as a tool to deliver and express animal genes in plants. This CLCuMB-based system, having its own promoter activity, offers the possibility of production of animal recombinant proteins in plants.


Assuntos
DNA Viral/genética , Vírus de Plantas/genética , Plantas/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Transfecção , Vetores Genéticos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA