Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neurobiol Dis ; 111: 26-35, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29246723

RESUMO

Missense mutations in the multi-domain kinase LRRK2 cause late onset familial Parkinson's disease. They most commonly with classic proteinopathy in the form of Lewy bodies and Lewy neurites comprised of insoluble α-synuclein, but in rare cases can also manifest tauopathy. The normal function of LRRK2 has remained elusive, as have the cellular consequences of its mutation. Data from LRRK2 null model organisms and LRRK2-inhibitor treated animals support a physiological role for LRRK2 in regulating lysosome function. Since idiopathic and LRRK2-linked PD are associated with the intraneuronal accumulation of protein aggregates, a series of critical questions emerge. First, how do pathogenic mutations that increase LRRK2 kinase activity affect lysosome biology in neurons? Second, are mutation-induced changes in lysosome function sufficient to alter the metabolism of α-synuclein? Lastly, are changes caused by pathogenic mutation sensitive to reversal with LRRK2 kinase inhibitors? Here, we report that mutation of LRRK2 induces modest but significant changes in lysosomal morphology and acidification, and decreased basal autophagic flux when compared to WT neurons. These changes were associated with an accumulation of detergent-insoluble α-synuclein and increased neuronal release of α-synuclein and were reversed by pharmacologic inhibition of LRRK2 kinase activity. These data demonstrate a critical and disease-relevant influence of native neuronal LRRK2 kinase activity on lysosome function and α-synuclein homeostasis. Furthermore, they also suggest that lysosome dysfunction, altered neuronal α-synuclein metabolism, and the insidious accumulation of aggregated protein over decades may contribute to pathogenesis in this late-onset form of familial PD.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Lisossomos/metabolismo , Mutação , Neurônios/metabolismo , alfa-Sinucleína/metabolismo , Animais , Autofagia , Células Cultivadas , Humanos , Concentração de Íons de Hidrogênio , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/antagonistas & inibidores , Lisossomos/patologia , Camundongos Transgênicos , Neurônios/patologia , Doença de Parkinson/genética , Doença de Parkinson/metabolismo
2.
J Biol Chem ; 288(29): 20843-20855, 2013 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-23744073

RESUMO

Although Parkinson disease (PD) is a progressive neurodegenerative disorder, available animal models do not exhibit irreversible neurodegeneration, and this is a major obstacle in finding out an effective drug against this disease. Here we delineate a new irreversible model to study PD pathogenesis. The model is based on simple castration of young male mice. Levels of inducible nitric-oxide synthase (iNOS), glial markers (glial fibrillary acidic protein and CD11b), and α-synuclein were higher in nigra of castrated male mice than normal male mice. On the other hand, after castration, the level of glial-derived neurotrophic factor (GDNF) markedly decreased in the nigra of male mice. Accordingly, castration also induced the loss of tyrosine hydroxylase-positive neurons in the nigra and decrease in tyrosine hydroxylase-positive fibers and neurotransmitters in the striatum. Reversal of nigrostriatal pathologies in castrated male mice by subcutaneous implantation of 5α-dihydrotestosterone pellets validates an important role of male sex hormone in castration-induced nigrostriatal pathology. Interestingly, castration was unable to cause glial activation, decrease nigral GDNF, augment the death of nigral dopaminergic neurons, induce the loss of striatal fibers, and impair neurotransmitters in iNOS(-/-) male mice. Furthermore, we demonstrate that iNOS-derived NO is responsible for decreased expression of GDNF in activated astrocytes. Together, our results suggest that castration induces nigrostriatal pathologies via iNOS-mediated decrease in GDNF. These results are important because castrated young male mice may be used as a simple, toxin-free, and nontransgenic animal model to study PD-related nigrostriatal pathologies, paving the way for easy drug screening against PD.


Assuntos
Envelhecimento/patologia , Castração/efeitos adversos , Óxido Nítrico Sintase Tipo II/metabolismo , Doença de Parkinson/enzimologia , Doença de Parkinson/patologia , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/patologia , Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Regulação para Baixo/efeitos dos fármacos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Hipocampo/patologia , Terapia de Reposição Hormonal , Mediadores da Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Neostriado/efeitos dos fármacos , Neostriado/enzimologia , Neostriado/patologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/deficiência , Doença de Parkinson/etiologia , Doença de Parkinson/fisiopatologia , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo , Substância Negra/patologia , Testosterona/administração & dosagem , Testosterona/farmacologia , Tirosina 3-Mono-Oxigenase/metabolismo , Regulação para Cima/efeitos dos fármacos , alfa-Sinucleína/metabolismo
3.
Res Sq ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38765977

RESUMO

PINK1 loss-of-function mutations and exposure to mitochondrial toxins are causative for Parkinson's disease (PD) and Parkinsonism, respectively. We demonstrate that pathological α-synuclein deposition, the hallmark pathology of idiopathic PD, induces mitochondrial dysfunction, and impairs mitophagy as evidenced by the accumulation of the PINK1 substrate pS65-Ubiquitin (pUb). We discovered MTK458, a brain penetrant small molecule that binds to PINK1 and stabilizes its active complex, resulting in increased rates of mitophagy. Treatment with MTK458 mediates clearance of accumulated pUb and α-synuclein pathology in α-synuclein pathology models in vitro and in vivo. Our findings from preclinical PD models suggest that pharmacological activation of PINK1 warrants further clinical evaluation as a therapeutic strategy for disease modification in PD.

4.
J Biol Chem ; 287(35): 29529-42, 2012 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-22753407

RESUMO

Chronic inflammation involving activated microglia and astroglia is becoming a hallmark of many human diseases, including neurodegenerative disorders. Although NF-κB is a multifunctional transcription factor, it is an important target for controlling inflammation as the transcription of many proinflammatory molecules depends on the activation of NF-κB. Here, we have undertaken a novel approach to attenuate NF-κB activation and associated inflammation in activated glial cells. RNS60 is a 0.9% saline solution containing charge-stabilized nanostructures that are generated by subjecting normal saline to Taylor-Couette-Poiseuille (TCP) flow under elevated oxygen pressure. RNS60, but not normal saline, RNS10.3 (TCP-modified saline without excess oxygen), and PNS60 (saline containing excess oxygen without TCP modification) were found to inhibit the production of nitric oxide (NO) and the expression of inducible NO synthase in activated microglia. Similarly, RNS60 also inhibited the expression of inducible NO synthase in activated astroglia. Inhibition of NF-κB activation by RNS60 suggests that RNS60 exerts its anti-inflammatory effect through the inhibition of NF-κB. Interestingly, RNS60 induced the activation of type IA phosphatidylinositol (PI) 3-kinase and Akt and rapidly up-regulated IκBα, a specific endogenous inhibitor of NF-κB. Inhibition of PI 3-kinase and Akt by either chemical inhibitors or dominant-negative mutants abrogated the RNS60-mediated up-regulation of IκBα. Furthermore, we demonstrate that RNS60 induced the activation of cAMP-response element-binding protein (CREB) via the PI 3-kinase-Akt pathway and that RNS60 up-regulated IκBα via CREB. These results describe a novel anti-inflammatory property of RNS60 via type IA PI 3-kinase-Akt-CREB-mediated up-regulation of IκBα, which may be of therapeutic benefit in neurodegenerative disorders.


Assuntos
NF-kappa B/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Oxigênio/farmacologia , Cloreto de Sódio/farmacologia , Animais , Linhagem Celular , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/fisiologia , Humanos , Proteínas I-kappa B/metabolismo , Inflamação/metabolismo , Camundongos , Microglia , Inibidor de NF-kappaB alfa , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo II/biossíntese , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo
5.
bioRxiv ; 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36824886

RESUMO

PINK1 loss-of-function mutations and exposure to mitochondrial toxins are causative for Parkinson's disease (PD) and Parkinsonism, respectively. We demonstrate that pathological α-synuclein deposition, the hallmark pathology of idiopathic PD, induces mitochondrial dysfunction and impairs mitophagy, driving accumulation of the PINK1 substrate pS65-Ubiquitin (pUb) in primary neurons and in vivo. We synthesized MTK458, a brain penetrant small molecule that binds to PINK1 and stabilizes an active heterocomplex, thereby increasing mitophagy. MTK458 mediates clearance of α-synuclein pathology in PFF seeding models in vitro and in vivo and reduces pUb. We developed an ultrasensitive assay to quantify pUb levels in plasma and observed an increase in pUb in PD subjects that correlates with disease progression, paralleling our observations in PD models. Our combined findings from preclinical PD models and patient biofluids suggest that pharmacological activation of PINK1 is worthy of further study as a therapeutic strategy for disease modification in PD. Highlights: Discovery of a plasma Parkinson's Disease biomarker candidate, pS65-Ubiquitin (pUb)Plasma pUb levels correlate with disease status and progression in PD patients.Identification of a potent, brain penetrant PINK1 activator, MTK458MTK458 selectively activates PINK1 by stimulating dimerization and stabilization of the PINK1/TOM complexMTK458 drives clearance of α-synuclein pathology and normalizes pUb in in vivo Parkinson's models.

6.
J Neuroimmune Pharmacol ; 9(4): 569-81, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24946862

RESUMO

Upregulation and/or maintenance of Parkinson's disease (PD)-related beneficial proteins such as Parkin and DJ-1 in astrocytes during neurodegenerative insults may have therapeutic efficacy in PD. Cinnamon is a commonly used natural spice and flavoring material throughout the world. Here we have explored a novel use of cinnamon in upregulating Parkin and DJ-1 and protecting dopaminergic neurons in MPTP mouse model of PD. Recently we have delineated that oral feeding of cinnamon (Cinnamonum verum) powder produces sodium benzoate (NaB) in blood and brain of mice. Proinflammatory cytokine IL-1ß decreased the level of Parkin/DJ-1 in mouse astrocytes. However, cinnamon metabolite NaB abrogated IL-1ß-induced loss of these proteins. Inability of TNF-α to produce nitric oxide (NO) and decrease the level of Parkin/DJ-1 in wild type (WT) astrocytes, failure of IL-1ß to reduce Parkin/DJ-1 in astrocytes isolated from iNOS (-/-) mice, and decrease in Parkin/DJ-1 in WT astrocytes by NO donor DETA-NONOate suggest that NO is a negative regulator of Parkin/DJ-1. Furthermore, suppression of IL-1ß-induced expression of iNOS in astrocytes by NaB and reversal of NaB-mediated protection of Parkin/DJ-1 by DETA-NONOate in astrocytes indicate that NaB protects Parkin/DJ-1 in activated astrocytes via suppressing iNOS. Similarly MPTP intoxication also increased the level of iNOS and decreased the level of Parkin/DJ-1 in vivo in the nigra. However, oral treatment of MPTP-intoxicated mice with cinnamon powder and NaB reduced the expression of iNOS and protected Parkin/DJ-1 in the nigra. These findings paralleled dopaminergic neuronal protection, normalized striatal neurotransmitters, and improved motor functions by cinnamon in MPTP-intoxicated mice. These results suggest that cinnamon may be beneficial for PD patients.


Assuntos
Cinnamomum/química , Neurônios Dopaminérgicos/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Proteínas Oncogênicas/metabolismo , Peroxirredoxinas/metabolismo , Fitoterapia , Ubiquitina-Proteína Ligases/metabolismo , Regulação para Cima/efeitos dos fármacos , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Modelos Animais de Doenças , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/metabolismo , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Proteína Glial Fibrilar Ácida , Interleucina-1beta/antagonistas & inibidores , Interleucina-1beta/farmacologia , Intoxicação por MPTP/tratamento farmacológico , Intoxicação por MPTP/metabolismo , Masculino , Camundongos , Atividade Motora/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Casca de Planta/química , Pós , Cultura Primária de Células , Proteína Desglicase DJ-1 , Benzoato de Sódio/sangue , Benzoato de Sódio/metabolismo , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
7.
J Neuroimmune Pharmacol ; 9(2): 218-32, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24122363

RESUMO

Neuroinflammation underlies the pathogenesis of various neurodegenerative disorders including Parkinson's disease (PD). Despite intense investigations, no effective therapy is available to stop its onset or halt its progression. RNS60 is a novel therapeutic containing charge-stabilized nanobubbles in saline, generated by subjecting normal saline to Taylor-Couette-Poiseuille flow under elevated oxygen pressure. Recently, we have delineated that RNS60 inhibits the expression of proinflammatory molecules in glial cells via type 1A phosphatidylinositol-3 kinase (PI3K)-mediated upregulation of IκBα. In this study, we demonstrate that RNS60 inhibited the expression of proinflammatory molecules in cultured microglial cells stimulated by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridium ion (MPP(+)) and in vivo in the nigra of MPTP-intoxicated mice. While investigating the underlying mechanisms, we found that MPTP intoxication rapidly stimulated the activation of type IB PI3K p110γ in the nigra, while suppressing the activation of type IA PI3K p110α/ß. Interestingly, RNS60 treatment suppressed the activation of p110γ PI3K, while inducing the activation of p110α/ß PI3K in the nigra of MPTP-intoxicated mice. Accordingly, RNS60 treatment increased the level of IκBα and inhibited the activation of NF-κB in the SNpc of MPTP-intoxicated mice. These findings paralleled dopaminergic neuronal protection, normalized striatal neurotransmitters, and improved motor functions in MPTP-intoxicated mice. These results strongly suggest a promising therapeutic role of this simple modified saline in PD and other neuroinflammatory disorders.


Assuntos
Neurônios Dopaminérgicos/efeitos dos fármacos , Nanotecnologia/métodos , Fármacos Neuroprotetores/farmacologia , Oxigênio/farmacologia , Transtornos Parkinsonianos/patologia , Cloreto de Sódio/farmacologia , Animais , Western Blotting , Cromatografia Líquida de Alta Pressão , Modelos Animais de Doenças , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Transtornos Parkinsonianos/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Cloreto de Sódio/química
8.
PLoS One ; 9(7): e101883, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25007337

RESUMO

Increase of the density of dendritic spines and enhancement of synaptic transmission through ionotropic glutamate receptors are important events, leading to synaptic plasticity and eventually hippocampus-dependent spatial learning and memory formation. Here we have undertaken an innovative approach to upregulate hippocampal plasticity. RNS60 is a 0.9% saline solution containing charge-stabilized nanobubbles that are generated by subjecting normal saline to Taylor-Couette-Poiseuille (TCP) flow under elevated oxygen pressure. RNS60, but not NS (normal saline), PNS60 (saline containing a comparable level of oxygen without the TCP modification), or RNS10.3 (TCP-modified normal saline without excess oxygen), stimulated morphological plasticity and synaptic transmission via NMDA- and AMPA-sensitive calcium influx in cultured mouse hippocampal neurons. Using mRNA-based targeted gene array, real-time PCR, immunoblot, and immunofluorescence analyses, we further demonstrate that RNS60 stimulated the expression of many plasticity-associated genes in cultured hippocampal neurons. Activation of type IA, but not type IB, phosphatidylinositol-3 (PI-3) kinase by RNS60 together with abrogation of RNS60-mediated upregulation of plasticity-related proteins (NR2A and GluR1) and increase in spine density, neuronal size, and calcium influx by LY294002, a specific inhibitor of PI-3 kinase, suggest that RNS60 upregulates hippocampal plasticity via activation of PI-3 kinase. Finally, in the 5XFAD transgenic model of Alzheimer's disease (AD), RNS60 treatment upregulated expression of plasticity-related proteins PSD95 and NR2A and increased AMPA- and NMDA-dependent hippocampal calcium influx. These results describe a novel property of RNS60 in stimulating hippocampal plasticity, which may help AD and other dementias.


Assuntos
Doença de Alzheimer/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo/citologia , Plasticidade Neuronal/efeitos dos fármacos , Oxigênio/farmacologia , Cloreto de Sódio/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Animais , Cálcio/metabolismo , Células Cultivadas , Classe Ia de Fosfatidilinositol 3-Quinase/genética , Classe Ia de Fosfatidilinositol 3-Quinase/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo , Humanos , Camundongos , Neurônios/metabolismo
9.
J Neuroimmune Pharmacol ; 7(2): 424-35, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21701815

RESUMO

DJ-1 (PARK7) is a neuroprotective protein that protects cells from oxidative stress. Accordingly, loss-of-function DJ-1 mutations have been linked with a familial form of early onset Parkinson disease. Mechanisms by which DJ-1 level could be enriched in the CNS are poorly understood. Recently we have discovered anti-inflammatory activity of sodium benzoate (NaB), a metabolite of cinnamon and a widely-used food additive. Here we delineate that NaB is also capable of increasing the level of DJ-1 in primary mouse and human astrocytes and human neurons highlighting another novel neuroprotective effect of this compound. Reversal of DJ-1-inducing effect of NaB by mevalonate, farnesyl phosphate, but not cholesterol and ubiquinone, suggests that depletion of intermediates, but not end products, of the mevalonate pathway is involved in the induction of DJ-1 by NaB. Accordingly, either an inhibitor of p21(ras) farnesyl protein transferase (FPTI) or a dominant-negative mutant of p21(ras) alone was also able to increase the expression of DJ-1 in astrocytes suggesting an involvement of p21(ras) in DJ-1 expression. However, an inhibitor of geranyl geranyl transferase (GGTI) and a dominant-negative mutant of p21(rac) had no effect on the expression of DJ-1, indicating the specificity of the effect. Similarly lipopolysaccharide (LPS), an activator of small G proteins, also inhibited the expression of DJ-1, and NaB and FPTI, but not GGTI, abrogated LPS-mediated inhibition. Together, these results suggest that NaB upregulates DJ-1 via modulation of mevalonate metabolites and that p21(ras), but not p21(rac), is involved in the regulation of DJ-1.


Assuntos
Fármacos Neuroprotetores/farmacologia , Proteínas Oncogênicas/biossíntese , Benzoato de Sódio/farmacologia , Regulação para Cima/efeitos dos fármacos , Alquil e Aril Transferases/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Cinnamomum zeylanicum/metabolismo , Aditivos Alimentares/farmacologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Ácido Mevalônico/metabolismo , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Doença de Parkinson/metabolismo , Proteína Desglicase DJ-1 , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA