Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(31): e2311745, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38587168

RESUMO

Choline is an essential micronutrient for infants' brain development and health. To ensure that infants receive the needed daily dose of choline, the U.S. Food and Drug Administration (FDA) has set requirements for choline levels in commercialized infant formulas. Unfortunately, not all families can access well-regulated formulas, leading to potential inadequacies in choline intake. Economic constraints or difficulties in obtaining formulas, exacerbated by situations like COVID-19, prompt families to stretch formulas. Accurate measurement of choline in infant formulas becomes imperative to guarantee that infants receive the necessary nutritional support. Yet, accessible tools for this purpose are lacking. An innovative integrated sensor for the periodic observation of choline (SPOOC) designed for at-home quantification of choline in infants' formulas and milk powders is reported. This system is composed of a choline potentiometric sensor and ionic-liquid reference electrode developed on laser-induced graphene (LIG) and integrated into a spoon-like device. SPOOC includes a micro-potentiometer that conducts the measurements and transmits results wirelessly to parents' mobile devices. SPOOC demonstrated rapid and accurate assessment of choline levels directly in pre-consuming infant formulas without any sample treatment. This work empowers parents with a user-friendly tool for choline monitoring promoting informed nutritional decision-making in the care of infants.


Assuntos
Colina , Fórmulas Infantis , Colina/análise , Colina/química , Fórmulas Infantis/química , Humanos , Lactente , COVID-19 , Grafite/química , Potenciometria/métodos
2.
Lab Chip ; 24(18): 4306-4320, 2024 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-39207360

RESUMO

Saliva has emerged as a primary biofluid for non-invasive disease diagnostics. Saliva collection involves using kits where individuals stimulate saliva production via a chewing device like a straw, then deposit the saliva into a designated collection tube. This process may pose discomfort to patients due to the necessity of producing large volumes of saliva and transferring it to the collection vessel. This work has developed a saliva collection and analysis device where the patient operates it like a lollipop, stimulating saliva production. The lollipop-mimic device contains yarn-based microfluidic channels that sample saliva and transfer it to the sensing zone embedded in the stem of the device. We have embedded electrochemical sensors in the lollipop platform to measure vanillin levels in saliva. Vanillin is the most common food flavoring additive and is added to most desserts such as ice cream, cakes, and cookies. Overconsumption of vanillin can cause side effects such as muscle weakness, and damage to the liver, kidneys, stomach, and lungs. We detected vanillin using direct oxidation at a laser-induced graphene (LIG) electrode. We showed a dynamic range of 2.5 µM to 30 µM, covering the physiologically relevant concentration of vanillin in saliva. The lab-on-a-lollipop platform requires only 200 µL of saliva and less than 2 minutes to fill the channels and complete the measurement. This work introduces the first sensor-embedded lollipop-mimic saliva collection and measurement system.


Assuntos
Benzaldeídos , Técnicas Eletroquímicas , Saliva , Saliva/química , Benzaldeídos/química , Benzaldeídos/análise , Humanos , Técnicas Eletroquímicas/instrumentação , Dispositivos Lab-On-A-Chip , Desenho de Equipamento
3.
Biosens Bioelectron ; 259: 116321, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38749287

RESUMO

Milk fever is a metabolic disorder that predominantly affects dairy animals during the periparturient period and within four weeks of calving. Milk fever is primarily attributed to a decrease in the animal's serum Ca2+ levels. Clinical milk fever occurs when Ca2+ concentration drops below 1.5 mM (6 mg/dL). Without prompt intervention, clinical milk fever leads to noticeable physical symptoms and health complications including coma and fatality. Subclinical milk fever is characterized by Ca2+ levels between 1.5 and 2.12 mM (6-8.48 mg/dL). Approximately 50% of multiparous dairy cows suffer from subclinical milk fever during the transition to lactation. The economic impact of milk fever, both direct and indirect, is substantial, posing challenges for farmers. To address this issue, we developed a low-cost electrochemical sensor that can measure bovine serum calcium levels on-site, providing an opportunity for early detection of subclinical and clinical milk fever and early intervention. This calcium sensor is a scalable solid contact ion sensing platform that incorporates a polymeric calcium-selective membrane and ionic liquid-based reference membrane into laser-induced graphene (LIG) electrodes. Our sensing platform demonstrates a sensitivity close to the theoretical Nernstian value (29.6 mV/dec) with a limit of detection of 15.6 µM and selectivity against the species in bovine serum. Moreover, our sensor can detect Ca2+ in bovine serum with 91% recovery.


Assuntos
Técnicas Biossensoriais , Cálcio , Indústria de Laticínios , Técnicas Eletroquímicas , Animais , Bovinos , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/economia , Feminino , Técnicas Eletroquímicas/economia , Técnicas Eletroquímicas/instrumentação , Cálcio/sangue , Indústria de Laticínios/instrumentação , Indústria de Laticínios/economia , Paresia Puerperal/diagnóstico , Paresia Puerperal/sangue , Desenho de Equipamento , Grafite/química , Limite de Detecção , Doenças dos Bovinos/diagnóstico , Doenças dos Bovinos/sangue , Doenças dos Bovinos/economia
4.
Biosensors (Basel) ; 13(2)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36831970

RESUMO

The COVID-19 pandemic revealed a pressing need for the development of sensitive and low-cost point-of-care sensors for disease diagnosis. The current standard of care for COVID-19 is quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). This method is sensitive, but takes time, effort, and requires specialized equipment and reagents to be performed correctly. This make it unsuitable for widespread, rapid testing and causes poor individual and policy decision-making. Rapid antigen tests (RATs) are a widely used alternative that provide results quickly but have low sensitivity and are prone to false negatives, particularly in cases with lower viral burden. Electrochemical sensors have shown much promise in filling this technology gap, and impedance spectroscopy specifically has exciting potential in rapid screening of COVID-19. Due to the data-rich nature of impedance measurements performed at different frequencies, this method lends itself to machine-leaning (ML) algorithms for further data processing. This review summarizes the current state of impedance spectroscopy-based point-of-care sensors for the detection of the SARS-CoV-2 virus. This article also suggests future directions to address the technology's current limitations to move forward in this current pandemic and prepare for future outbreaks.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Pandemias , Teste para COVID-19 , Técnicas de Laboratório Clínico/métodos , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA