Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(11)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37299133

RESUMO

Water scarcity is a major obstacle to forage crop production in arid and semi-arid regions. In order to improve food security in these areas, it is imperative to employ suitable irrigation management techniques and identify drought-tolerant cultivars. A 2-year field experiment (2019-2020) was conducted in a semi-arid region of Iran to assess the impact of different irrigation methods and water deficit stress on forage sorghum cultivars' yield, quality, and irrigation water-use efficiency (IWUE). The experiment involved two irrigation methods, i.e., drip (DRIP) and furrow (FURW), and three irrigation regimes supplied 100% (I100), 75% (I75), and 50% (I50) of the soil moisture deficit. In addition, two forage sorghum cultivars (hybrid Speedfeed and open-pollinated cultivar Pegah) were evaluated. This study revealed that the highest dry matter yield (27.24 Mg ha-1) was obtained under I100 × DRIP, whereas the maximum relative feed value (98.63%) was achieved under I50 × FURW. Using DRIP resulted in higher forage yield and IWUE compared to FURW, and the superiority of DRIP over FURW increased with the severity of the water deficit. The principal component analysis indicated that, as drought stress severity increased across all irrigation methods and cultivars, forage yield decreased, while quality increased. Plant height and leaf-to-stem ratio were found to be suitable indicators for comparing forage yield and quality, respectively, and they showed a negative correlation between the quality and quantity of forage. DRIP improved forage quality under I100 and I75, while FURW exhibited a better feed value under the I50 regime. Altogether, in order to achieve the best possible forage yield and quality while minimizing water usage, it is recommended to grow the Pegah cultivar and compensate for 75% of soil moisture deficiency using drip irrigation.

2.
Plant Physiol Biochem ; 159: 383-391, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33450508

RESUMO

Wax accumulation on the sorghum surface plays an important role in drought tolerance by preventing non-stomatal water loss. Thereby, the effect of post-flowering drought stress (PFDS) on the epicuticular wax (EW) amount, relative water content (RWC), chlorophyll, and grain yield in sorghum drought contrasting genotypes were investigated. The experiment was conducted as a split-plot based on randomized complete block design (RCBD) with two water treatments (normal watering and water holding after 50% flowering stage), and three genotypes (Kimia and KGS23 as drought-tolerant and Sepideh as drought-susceptible). Scanning electron microscopy and GC-MS analyses were used to determine the wax crystals density and its compositions, respectively. In addition, based on literature reviews and publicly available datasets, six wax biosynthesis drought stress-responsive genes were chosen for expression analysis. The results showed that the amounts of EW and wax crystals density were increased in Kimia and Sepideh genotypes and no changed in KGS23 genotype under drought stress. Chemical compositions of wax were classified into six major groups including alkanes, fatty acids, aldehydes, esters, alcohols, and cyclic compounds. Alkanes increment in drought-tolerant genotypes led to make an effective barrier against the drought stress to control water losses. In addition, the drought-tolerant genotypes had higher levels of RWC compared to the drought-susceptible ones, resulted in higher yield produced under drought condition. According to the results, SbWINL1, FATB, and CER1 genes play important roles in drought-induced wax biosynthesis. The results of the present study revealed a comprehensive view of the wax and its compositions and some involved genes in sorghum under drought stress.


Assuntos
Secas , Folhas de Planta , Sorghum , Ceras , Genes de Plantas/genética , Folhas de Planta/química , Folhas de Planta/genética , Folhas de Planta/metabolismo , Sorghum/química , Sorghum/genética , Sorghum/metabolismo , Estresse Fisiológico/genética , Água , Ceras/química , Ceras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA