Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 46(7): 6300-6314, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-39057018

RESUMO

With around one billion of the world's population affected, the era of the metabolic-associated fatty liver disease (MAFLD) pandemic has entered the global stage. MAFLD is a chronic progressive liver disease with accompanying metabolic disorders such as type 2 diabetes mellitus and obesity which can progress asymptomatically to liver cirrhosis and subsequently to hepatocellular carcinoma (HCC), and for which to date there are almost no approved pharmacologic options. Because MAFLD has a very complex etiology and it also affects extrahepatic organs, a multidisciplinary approach is required when it comes to finding an effective and safe active substance for MAFLD treatment. The optimal drug for MAFLD should diminish steatosis, fibrosis and inflammation in the liver, and the winner for MAFLD drug authorisation seems to be the one that significantly improves liver histology. Saroglitazar (Lipaglyn®) was approved for metabolic-dysfunction-associated steatohepatitis (MASH) in India in 2020; however, the drug is still being investigated in other countries. Although the pharmaceutical industry is still lagging behind in developing an approved pharmacologic therapy for MAFLD, research has recently intensified and many molecules which are in the final stages of clinical trials are expected to be approved in the coming few years. Already this year, the first drug (Rezdiffra™) in the United States was approved via accelerated procedure for treatment of MAFLD, i.e., of MASH in adults. This review underscores the most recent information related to the development of drugs for MAFLD treatment, focusing on the molecules that have come furthest towards approval.

2.
J Clin Med ; 12(20)2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37892698

RESUMO

In the current modern era of unhealthy lifestyles, non-alcoholic fatty liver disease (NAFLD) is the most prevalent liver disease and has become a serious global health problem. To date, there is no approved pharmacotherapy for the treatment of NAFLD, and necessary lifestyle changes such as weight loss, diet, and exercise are usually not sufficient to manage this disease. Patients with type 2 diabetes mellitus (T2DM) have a significantly higher risk of developing NAFLD and vice versa. Sodium-glucose cotransporter 2 (SGLT2) inhibitors are antidiabetic agents that have recently been approved for two other indications: chronic kidney disease and heart failure in diabetics and non-diabetics. They are also emerging as promising new agents for NAFLD treatment, as they have shown beneficial effects on hepatic inflammation, steatosis, and fibrosis. Studies in animals have reported favorable effects of SGLT2 inhibitors, and studies in patients also found positive effects on body mass index (BMI), insulin resistance, glucose levels, liver enzymes, apoptosis, and transcription factors. There are some theories regarding how SGLT2 inhibitors affect the liver, but the exact mechanism is not yet fully understood. Therefore, biomarkers to evaluate underlying mechanisms of action of SGLT2 inhibitors on the liver have now been scrutinized to assess their potential as a future in-label therapy for NAFLD. In addition, finding suitable non-invasive biomarkers could be helpful in clinical practice for the early detection of NAFLD in patients. This is crucial for a positive disease outcome. The aim of this review is to provide an overview of the most recent findings on the effects of SGLT2 inhibitors on NAFLD biomarkers and the potential of SGLT2 inhibitors to successfully treat NAFLD.

3.
Biomedicines ; 9(7)2021 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-34356899

RESUMO

Over the past decade, immune checkpoint inhibitors (ICI) have revolutionized the treatment of advanced melanoma and ensured significant improvement in overall survival versus chemotherapy. ICI or targeted therapy are now the first line treatment in advanced melanoma, depending on the tumor v-raf murine sarcoma viral oncogene homolog B1 (BRAF) mutational status. While these new approaches have changed the outcomes for many patients, a significant proportion of them still experience lack of response, known as primary resistance. Mechanisms of primary drug resistance are not fully elucidated. However, many alterations have been found in ICI-resistant melanomas and possibly contribute to that outcome. Furthermore, some tumors which initially responded to ICI treatment ultimately developed mechanisms of acquired resistance and subsequent tumor progression. In this review, we give an overview of tumor primary and acquired resistance mechanisms to ICI and discuss future perspectives with regards to new molecular targets and combinatorial therapies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA