Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
J Sci Food Agric ; 102(14): 6470-6480, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35567377

RESUMO

BACKGROUND: With production of over 6 million tonnes a year of sesame, its capsules are considered to be an unutilized waste. In this study, extraction of pectin from this novel source was optimized using a green method, and the functional and physiochemical characteristics of the resultant pectin were compared to commercial pectin. RESULTS: In this study, the sesame capsule pectin (SCP) extraction conditions were optimized to reach maximum yield, and the results showed that the maximum pectin extraction yield (138 g kg-1 ) was obtained under optimal conditions (microwave power 700 W, irradiation time 5 min, pH 1.5, and liquid-to-solid ratio 41.8 (mL g-1 ). The results showed that the pectin was low methoxyl type with a galacturonic acid content of 670 g kg-1 . The extracted pectin had a high molecular weight (341 kDa) and surface charge (34.09 ± 1.88 mV) and exhibited 66% DPPH radical scavenging. The obtained results from 1 H-nuclear magnetic resonance and Fourier transform infrared spectra validated the presence of pectin structure in the extracted sample. CONCLUSION: Sesame capsule pectin, when compared to commercial pectin, demonstrated better functional properties in terms of emulsifying properties, oil holding capacity, foaming capacity and antioxidant activity. SCP showed similar properties in comparison to its commercial counterpart, which suggests that it could well be considered as a new and suitable source for pectin extraction. © 2022 Society of Chemical Industry.


Assuntos
Pectinas , Sesamum , Antioxidantes/química , Cápsulas , Micro-Ondas , Pectinas/química
2.
Food Technol Biotechnol ; 59(2): 174-184, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34316278

RESUMO

RESEARCH BACKGROUND: Barberry juice is a rich source of bioactive compounds and shows different health properties such as antioxidant and anticancer activities. Clarification, as the removal process of suspended material, is an important step in the production of fruit juice due to its significant effect on the appearance, flavour and commercialisation of juice. Pectinase is the most important enzyme applied in juice clarification that breaks down the pectin polymer structure and reduces the undesirable turbidity. Pectinase immobilisation is a way to overcome free enzyme drawbacks such as instability, high cost, the difficulty of recovery and recyclability. Also, continuous clarification process which is highly preferred in fruit juice industry is not possible without enzyme immobilisation. EXPERIMENTAL APPROACH: Pectinase enzymes were immobilised on the functionalised glass beads (glass bead with (3-aminopropyl)triethoxysilane) by glutaraldehyde, polyaldehyde derivatives of pullulan and kefiran and the barberry juice was clarified in the batch and continuous processes in a packed bed reactor (PBR). Also, the effect of clarification on the physicochemical and antioxidant properties of the barberry juice samples was evaluated. RESULTS AND CONCLUSIONS: The optimum conditions for clarification in the PBR were: flow rate 0.5 mL/min, temperature 50 °C and treatment time 63 min. Clarification led to a decrease in turbidity, pH, total soluble solid content, viscosity, total phenolic content and antioxidant activity of the juice samples. Also, this process increased the clarity, acidity, reducing sugar concentration and the lightness parameter of the barberry juice. The greatest effect of clarification on the studied properties of barberry juice was related to the pectinase immobilised by the polyaldehyde of kefiran in the continuous process and both new cross-linkers (polyaldehyde derivatives of pullulan and kefiran) immobilised the enzyme better than the common cross-linker (glutaraldehyde). NOVELTY AND SCIENTIFIC CONTRIBUTION: For the first time, barberry juice was clarified with pectinase immobilised by polyaldehyde derivatives of pullulan and kefiran and the obtained results showed that the pectinase immobilisation by these new cross-linkers was much more efficient than by the glutaraldehyde as a common cross-linker. These findings can be of use for an industrialised production of fruit juices.

3.
J Sci Food Agric ; 101(15): 6552-6562, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34014565

RESUMO

BACKGROUND: The rind from cantaloupe is an agricultural waste of cantaloupe industrial processing. The current study tried to (i) evaluate the potential use of cantaloupe rind as a pectin source, (ii) optimize the factors of microwave-assisted extraction process using Box-Behnken design, and (iii) characterize the isolated pectin using various physicochemical, structural, functional and bioactivity properties. RESULTS: Four variables of the extraction process were successfully optimized at a microwave power of 700 W, irradiation time of 112 s, pH value of 1.50 and liquid to solid (LS) value of 30 mL g-1 , with a yield of 181.4 g kg-1 . The analysis indicated a high-methylated galacturonic acid-rich (703.4 g kg-1 ) sample with an average molecular weight of 390.475 kDa. Also, the isolated pectin showed considerable functionality and antioxidant ability. The main functional groups, structural characteristics and crystallinity of samples were comparatively studied using Fourier transform infrared, nuclear magnetic resonance and X-ray diffraction spectroscopies. CONCLUSION: In comparison to commercial citrus pectin, isolated pectin showed a significantly higher value for most of the functional analysis such as oil holding capacity, emulsifying capacity, emulsion stability, DPPH• and ABTS•+ scavenging activity, and reducing power assay. In other analyses the isolated sample was close to the commercial one, indicating that cantaloupe rinds should be considered as a suitable additional resource for pectin production. © 2021 Society of Chemical Industry.


Assuntos
Cucumis melo/química , Pectinas/isolamento & purificação , Extratos Vegetais/isolamento & purificação , Resíduos/análise , Emulsões/química , Frutas/química , Micro-Ondas , Peso Molecular , Pectinas/química , Extratos Vegetais/química
4.
Food Technol Biotechnol ; 58(4): 391-401, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33505202

RESUMO

RESEARCH BACKGROUND: Pectinase enzyme has become a valuable compound in beverage industry. One of the most significant concepts to overcome the drawbacks of using industrial enzymes is their immobilization. In the present study, magnetic chitosan microparticles were utilized as a substrate for pectinase immobilization. New methods of enzyme immobilization involve the use of non-chemical cross-linkers between the enzyme and the substrate. The aim of this study is to immobilize the pectinase enzyme using polyaldehyde kefiran as a macromolecular cross-linker on magnetic particles. EXPERIMENTAL APPROACH: Pectinase was immobilized in four steps: relative oxidation of kefiran and its application as a cross-linker, production of magnetic iron(II) iron(III) oxide (Fe3O4) microparticles, coating of magnetic Fe3O4 microparticles with chitosan, and immobilization of the enzyme on the substrate, prepared by the use of oxidized kefiran cross-linker. Parameters such as cross-linking concentration, time and ratio of chitosan magnetic microparticles to enzyme were optimized. Fourier-transform infrared spectroscopy (FTIR), dynamic light scattering, transmission electron microscopy, and vibrating sample magnetometer were used to identify the groups and investigate the structures. The biochemical properties (stability of enzyme activity at different pH, temperature and time), enzyme reusability, kinetic parameters (K m and ν max) and apple juice turbidity, using free and immobilized pectinase enzymes, were also measured. RESULTS AND CONCLUSIONS: Cross-linker concentration, cross-linking time and the ratio of magnetic Fe3O4 microparticles with chitosan to enzyme were important factors in activity recovery of pectinase. FTIR analysis correctly identified functional groups in the structures. The results showed that after enzyme stabilization, the particle size and molecular mass, respectively, increased and decreased the magnetic saturation strength. According to the thermal kinetic study, the activity of the immobilized pectinase was higher than of its free form. The findings of this study indicate excellent stability and durability of the immobilized pectinase. Finally, a magnetic pectinase micro-biocatalyst was used to clarify apple juice, which reduced turbidity during processing. NOVELTY AND SCIENTIFIC CONTRIBUTION: This study investigates the usage of kefiran oxidized as a new cross-linker for the immobilization of pectinase enzyme. Magnetic pectinase micro-biocatalyst has a good potential for industrial applications in the food industry, with high thermal stability.

5.
J Food Sci Technol ; 54(5): 1168-1174, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28416866

RESUMO

The effect of kefiran on cold-set gelation of whey protein isolate (WPI) at 25 °C was studied using rheological measurements and environmental scanning electron microscopy (ESEM). The gelation of samples was induced by the addition of glucono-δ-lactone to the dispersions. WPI concentration was maintained at 8% (w/v) and the concentration of kefiran varied from 0 to 0.08% (w/v). According to rheological measurements, the addition of kefiran into WPI dispersions resulted in a significant increase in the gel strength, the yield stress, and the shear stress values at the flowing point. The gelling point and gelation pH of samples decreased significantly with an increase in kefiran concentration. ESEM micrographs showed that the presence of kefiran played an important role in the microstructure formation of gels. The microstructure of kefiran-WPI mixed gels was more compact and dense, compared to the WPI gel. Depletion interactions between kefiran and whey protein aggregates can be regarded as the chief factor which was responsible for these effects. The present work demonstrated that rheological and microstructural properties of acid-induced whey protein gels were improved by the addition of kefiran.

6.
J Food Sci Technol ; 53(1): 739-47, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26787994

RESUMO

Mixture of pomegranate juice and whey was evaluated as a potential substrate for production of a novel beverage by kefir grains. The effects of two different variables, fermentation, temperature (19 and 25 °C) and kefir grain amount (5 %w/v and 8 %w/v), on total phenolic content (TPC) and antioxidant activities of beverage were examined during a fermentation time of 32 h. TPC and antioxidant activities including 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging, reducing power, inhibition effect upon linoleic acid autoxidation and inhibition effect upon ascorbate autoxidation increased significantly (p < 0.05) during fermentation, but metal chelating effect showed no significant difference. The highest increases were observed when the temperature of 25 °C and kefir grain amount of 8 %w/v were applied. Results proved antioxidant activities of beverages were desirable and fermentation by kefir grains has the ability to enhance these antioxidant activities, as compared with unfermented beverage. Also pomegranate juice and whey were suitable media for producing a novel dairy-juice beverage.

7.
J Food Sci Technol ; 53(2): 1294-302, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27162410

RESUMO

In this study, biodegradable nanocomposite film composed of pullulan - whey protein isolate (WPI) - montmorillonite (MMT) were developed and characterized as a function of incorporating various amounts of MMT nanoparticles (0, 1, 3 and 5 % wt). Results showed that the water-vapor permeability, moisture content, moisture absorption and water solubility decreased when the nano-MMT content was increased. Tensile strength improved and elongation at break simultaneously decreased with increasing MMT content. The glass transition temperature (Tg(and melting-point temperature (Tm) increased with increasing nano-MMT content. Scanning electron microscope (SEM) and X-ray diffraction (XRD) analysis revealed uniform distribution of MMT into the polymer matrix. Atomic force microscopy (AFM) showed enhancement of films' roughness with increasing MMT content.

8.
J Food Sci Technol ; 52(6): 3711-8, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26028755

RESUMO

Mixture of pomegranate juice and whey was evaluated as a potential substrate for production of a novel probiotic beverage by kefir grains. Different fermentation conditions were used as viz: two fermentation temperature (19 ºC and 25 ºC) and two levels of kefir grains inoculum (5 % and 8%w/v). pH, acidity, lactose consumption as well as organic acids formation were determined during 32 hours of fermentation. Results showed that kefir grains were able to utilize lactose and decrease pH, increase acidity, produce lactic acid and acetic acid, while the level of citric acid decreased. It was observed these change depended on temperature and level of kefir grains with the highest changes at the temperature of 25 ºC and kefir grains inoculum of 8%w/v. Pomegranate juice and whey mixture therefore may serve as a suitable substrate for the production of novel probiotic dairy-fruit juice beverage by kefir grains and the sensory characteristics of this beverage were shown desirable results.

9.
J Food Sci Technol ; 52(10): 6583-90, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26396404

RESUMO

The addition effect of date liquid sugar (DLS, 1-9 % v/v) to yoghurt milk on the physical (colour, firmness and syneresis), chemical (pH, total titratable acidity (TTA), total phenolic content (TPC) and antioxidant activity), rheological (viscosity and flow behaviour), and sensory attributes was scrutinized. Results showed that the pH value decreased by increasing DLS concentration from 1 to 6 %, while the TTA decreased with an increase in DLS from 6 to 9 % (p < 0.05). The whey syneresis, firmness and viscosity values were considerably influenced by the DLS content and acidity of the yoghurts (p < 0.05). A noticeable increase in antioxidant activity and TPC was found by the increasing DLS content (p < 0.05). Yoghurts containing 6 % v/v DLS also had the lowest syneresis and the highest firmness among the different samples. Moreover, a pseudoplastic rheological behaviour was detected for all the produced yoghurts. An increase in DLS concentration of manufactured yoghurts led to an increase in a, b and total colour difference (TCD) values and a decrease in L value (p < 0.05). The sensory evaluation revealed that there was no significant different in the colour scores. However, the used panelists determined the yoghurt supplemented with 6 % DLS had the highest scores for other investigated attributes.

10.
J Food Sci Technol ; 52(9): 5781-9, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26344992

RESUMO

The ability of different Lactobacillus strains to produce conjugated linoleic acid (CLA) from linoleic acid was evaluated. Preliminary experiments revealed that L. plantarum among the screened strains had the highest CLA-producing potential (95.25 µg/mL). The cell growth of this bacterium was studied in three media of MRS broth, skim milk and skim milk supplemented with yeast extract and glucose. Results showed that the use of yeast extract and glucose could significantly increase the cell growth and CLA production. Response surface methodology (RSM) was applied to investigate the effects of three independent variables; linoleic acid (LA), yeast extract concentrations and inoculum size on the CLA formation. A second-order polynomial model with high R (2) value (0.981) was developed using multiple linear regression analysis. The optimum conditions to achieve the highest CLA production (240.69 µg/mL) was obtained using 3 mg/mL LA, 4 g/L yeast extract and inoculum size of 4 % v/v. CLA concentration of the optimal sample was analyzed by Gas Chromatography (GC). The cis-9, trans-11 CLA was the major CLA isomer of total CLA detected.

11.
J Food Sci Technol ; 52(6): 3422-32, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26028723

RESUMO

A central composite design (CCD) was used to evaluate the effects of fermentation temperature (20-30 ºC) and kefir grains amount (2-8%w/v) on total phenolic content and antioxidant activities of apple juice and whey based novel beverage fermented by kefir grains. The response surface methodology (RSM) showed that the significant second-order polynomial regression equation with high R(2) (>0.86) was successfully fitted for all response as function of independent variable. The overall optimum region was found to be at the combined level of 7.56%w/v kefir grains and temperature of 24.82 ºC with the highest value for total phenolic content (TPC) and antioxidant activities. At this optimum point TPC, 1, 1-Diphenyl-2-picrylhydrazyl radical scavenging, metal chelating effect, reducing power, inhibition of linoleic acid autoxidation and inhibition of ascorbate autoxidation were 165.02 mgGA/l, 0.38 ml/1 ml, 0.757 (absorbance at 700 nm), 46.12 %, 65.33 % and 21 %, respectively. No significant difference (p < 0.05) was found between actual values and predicated values.

12.
J Food Sci Technol ; 52(6): 3485-93, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26028730

RESUMO

Physico-mechanical, thermal and structural characteristics of nanocomposite film composed of kefiran-whey protein isolate (WPI)-montmorillonite (MMT; 1, 3 and 5 % w/w) were studied. Incorporation of MMT significantly affected the mechanical attributes of the kefiran-WPI films. The tensile strength and Young's modulus increased and the percentage of elongation at break decreased as the MMT content increased. Moisture content, moisture absorption and water solubility decreased as the MMT concentration increased. Differential scanning calorimetry indicated that the glass transition temperature for kefiran-WPI film was -12.5 °C and was noticeably affected by an increase in MMT. X-ray diffraction analysis showed formation of an exfoliated structure with the addition of small amounts of MMT to the kefiran-WPI matrix. Intercalation and some exfoliation occurred up to 5 % (wt) increase in MMT. Scanning electron microscopy demonstrated ideal dispersion for MMT nanoparticles into the structure of the bio-nanocomposite films.

13.
J Food Sci Technol ; 52(4): 2428-33, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25829629

RESUMO

In this study, the effects of fat (0.5 %, 3.2 % and 5.0 %), inulin (0.0 and 1.0 %) and starter culture (0.0 %, 0.5 %, 1.0 % and 1.5 %) on the angiotensin converting enzyme (ACE)-inhibitory activity of probiotic yogurt containing non-viable bacteria were assessed. Proteolytic activities of bacteria were also investigated. Yogurts were prepared either using a sole yogurt commercial culture including Streptococcus thermophilus and Lactobacillus delbrueckii subs. bulgaricus or bifidobacterium animalis BB-12 and Lactobacillus acidophilus La5 in addition to yogurt culture. Relative degrees of proteolysis were found to be considerably higher in yogurt samples than UHT milk as the control. Both regular and probiotic yogurts showed considerable ACE-inhibitory activities. Results showed that degree of proteolysis was not influenced by different fat contents, while was increased by high concentration of starter culture (1.5 % w/w) and reduced by inulin (1 % w/w). ACE-inhibitory activities of yogurt were also negatively affected by the presence of inulin and high levels of fat (5 % w/w). Moreover, yogurt containing probiotic bacteria showed higher inhibitory against ACE in comparison to the yogurt prepared with non-probiotic strains.

14.
J Food Sci Technol ; 51(10): 2857-61, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25328238

RESUMO

The purpose of this study was to determine the effect of ultrasound treatment on the contents of daidzin, genistin, and their respective aglycones, daidzein and genistein, in resultant soymilk. Soybean slurry was exposed to ultrasound treatment, filtered, and placed in an ultrasound cleaning bath set with different frequencies (35and 130 KHz), treatment temperatures (20 and 40 °C), and times (20, 40, and 60 min). Concentrations for these isoflavones were determined using reverse-phase high-performance liquid chromatography. Results indicated that both frequencies significantly (p < 0.05) increased isoflavone content (IC), glycosides, and aglycones in extracted soymilk. These results were attributed to induced cavitation, which increases the permeability of plant tissues. However, the frequency of 35 kHz caused a noticeably higher increase in IC than 130 kHz. Results also revealed significant increases in IC with increased sonication time (from 20 to 60 min) and with increased temperature (from 20 to 40 °C).

15.
J Food Sci Technol ; 51(1): 34-42, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24426045

RESUMO

Kernel chemical composition and fatty acids profile of three walnut cultivars (Toyserkan, Chaboksar and Karaj) was analyzed. Some physicochemical properties, total phenolics content (TPC), ortho-diphenols content (ODC) and total tocopherol concentration (TTC) of extracted oils from the walnuts were also determined. The antioxidant activity of oil was measured by 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging capacity and ß-carotene bleaching assays. The analysis of chemical composition revealed that protein and dietary fiber was highest in Toyserkan cultivar. Phosphorus was the most abundant element in the walnut kernels, followed by potassium, magnesium and calcium. The linoleic acid and linolenic contents ranged from 50.15% to 51.36% and 10.48% to 12.04%, respectively. Also, the results demonstrated that acid value, saponification value and viscosity of extracted oil had significantly varied between all cultivars. The extracted oil from Chaboksar cultivar illustrated more hydro peroxides and secondary products than those obtained from other cultivars. A positive correlation was found between Rancimat values and oleic acid content (r = 0.60), but considerably negative correlation with TTC (r = -0.81) and TPC (r = -0.92). The relationship between percentage of remaining DPPH radical and ß-carotene of walnut oils showed high correlation among three selected cultivars (r = -0.94 to -0.97).

16.
Int J Biol Macromol ; 266(Pt 1): 130932, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38527683

RESUMO

The fabrication possibility of nanocomposite film from sweet cherry tree exudate gum (SCG) was studied. To improve SCG film properties, oxidation with hydrogen peroxide, ultraviolet irradiation (UV-A and UV-C), and TiO2 nanoparticles (T-NPs) were used. Hydrogen peroxide oxidation at higher amounts decreased the water vapor permeability (WVP) and thickness and increased the mechanical properties and transparency. In comparison with the UV-A, UV irradiation of the C-type increased permeability, and elongation at break (EAB) and thickness, but reduced the tensile strength (TS), solubility, and transparency. The permeability and tensile strength were increased and elongation at break was decreased at a longer time of irradiation. The transparency values of fabricated films ranged from 65.3 to 79.5 % and WVP were in the range of 2.32-4.72 (×10-10 g/m.s.Pa). The measured TS of the SCG films were between 2.2 and 5 MPa and the EAB of the SCG films was between 35 and 68.7 %. The FTIR spectrum and SEM images revealed that the treatments could affect the bonds and the smoothness of the film surface, respectively. Images provided by AFM showed that the roughness of the films was increased by the addition of T-NPs. The incorporation of T-NPs increased the TS and decreased EAB and WVP. These results indicated that oxidation, UV irradiation and nanomaterials incorporation could be used to improve SCG film properties that are related to food packaging material.


Assuntos
Peróxido de Hidrogênio , Nanopartículas , Oxirredução , Permeabilidade , Gomas Vegetais , Prunus avium , Titânio , Raios Ultravioleta , Titânio/química , Peróxido de Hidrogênio/química , Nanopartículas/química , Gomas Vegetais/química , Prunus avium/química , Vapor , Nanocompostos/química , Resistência à Tração , Solubilidade
17.
Int J Biol Macromol ; 259(Pt 2): 129182, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176499

RESUMO

Increasing demand for high-quality fresh fruits and vegetables has led to the development of innovative active packaging materials that exhibit controlled release of antimicrobial/antioxidant agents. In this study, composite biopolymer films consisting of methylcellulose (MC) and chitosan nanofibers (ChNF) were fabricated, which contained lactoferrin (LAC)-loaded silver-metal organic framework (Ag-MOF) nanoparticles. The results indicated that the nanoparticles were uniformly distributed throughout the biopolymer films, which led to improvements in tensile strength (56.1 ± 3.2 MPa), thermal stability, water solubility, swelling index, water vapor barrier properties (from 2.2 ± 2.1 to 1.9 ± 1.9 × 10-11 g. m/m2. s. Pa), and UV-shielding effects. The Ag-MOF-LAC2% films also exhibited strong and long-lasting antibacterial activity against E. coli (19.8 ± 5.2 mm) and S. aureus (20.1 ± 3.2 mm), which was attributed to the slow release of antimicrobial LAC from the films. The composite films were shown to maintain the fresh appearance of apples for at least seven days, which was attributed to their antimicrobial and antioxidant activities. Consequently, these composite films have the potential in the assembly of innovative active packaging materials for protecting fresh fruits and vegetables. However, further work is required to ensure their safety and economic viability.


Assuntos
Anti-Infecciosos , Quitosana , Malus , Nanofibras , Nanopartículas , Metilcelulose , Antioxidantes/farmacologia , Lactoferrina , Escherichia coli , Staphylococcus aureus , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Biopolímeros , Embalagem de Alimentos/métodos
18.
Food Sci Nutr ; 11(3): 1257-1271, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36911847

RESUMO

New mixed Alcalase-hydrolysates were developed using corn gluten meal (CP) and soy protein (SP) hydrolysates, namely CPH, SPH, SPH30:CPH70, SPH70:CPH30, and SPH50:CPH50. Amino acid profile, surface hydrophobicity (H 0), molecular weight (MW) distribution, antioxidant activity, angiotensin-converting enzyme (ACE), α-amylase, and α-glucosidase inhibitory activities, and functional characteristics of hydrolysates were determined. Hydrolysis changed the amount of hydrophilic and hydrophobic amino acid composition and significantly increased the H 0 values of hydrolysates, especially for CPH. The DPPH radical scavenging activity (RSA) was higher for CPH, SPH30:CPH70, and SPH50:CPH50 than SPH and SPH70:CPH30. Moreover, SPH, SPH70:CPH30, and SPH50:CPH50 showed lower MW than CPH, and this correlated with the higher hydrophilicity, and ABTS and hydroxyl RSA values obtained for SPH and the mixed hydrolysates with predominantly SPH. SPH70:CPH30 exhibited higher ACE, α-glucosidase, and α-amylase inhibitory activities among all samples due to its specific peptides with high capacity to interact with amino acid residues located at the enzyme active site and also low binding energy. At 15% degree of hydrolysis, both SPH and CPH showed enhanced solubility at pH 4.0, 7.0 and 9.0, emulsifying activity, and foaming capacity. Taken together, SPH70:CPH30 displayed strong antioxidant, antihypertensive, and antidiabetic attributes, emulsifying activity and stability indexes, and foaming capacity and foaming stability, making it a promising multifunctional ingredient for the development of functional food products.

19.
Food Sci Nutr ; 11(2): 1051-1058, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36789035

RESUMO

In this study, physicochemical and quality properties, fatty acid composition, and triglyceride composition of Iranian Kurdish butter oil (IKBO) obtained from yogurt drink (doogh) butter were investigated. Local doogh butter, prepared from cow's (CIKBO) and ewe's milk (EIKBO), was utilized as the raw material for this purpose. The free fatty acids (FFA) and peroxide values of IKBOs of the cow (CIKBO) and ewe (EIKBO) were obtained at 0.41 ± 0.01 and 0.39 ± 0.01 (g Oleic acid 100/g oil), and 1.32 ± 0.00 and 1.35 ± 0.00 (meq O2 kg/oil), respectively. The amounts of saturated fatty acids (SFAs): 70.27 ± 0.62 and 72.13 ± 0.84 (g/100 g), monounsaturated fatty acids (MUFAs): 19.37 ± 0.74 and 20.56 ± 0.97 (g/100 g), and polyunsaturated fatty acids (PUFAs): 1.22 ± 0.12 and 2.75 ± 0.38 (g/100 g) were obtained in CIKBO and EIKBO, respectively. The significant majority of the fatty acids (FAs) in the examined CIKBO and EIKBO were myristic (CIKBO: 13.76 ± 0.02 (g/100 g) and EIKBO: 14.83 ± 0.07 (g/100 g)), palmitic (CIKBO: 33.14 ± 0.28 (g 100/g) and EIKBO: 31.86 ± 0.02 (g/100 g)), stearic (CIKBO: 8.27 ± 0.06 (g/100 g) and EIKBO: 7.95 ± 0.06 (g/100 g)), capric (CIKBO: 4.83 ± 0.03 (g/100 g) and EIKBO: 6.75 ± 0.01 (g/100 g)), and oleic acids (CIKBO: 15.37 ± 0.12 (g/100 g) and EIKBO: 17.83 ± 0.02 (g/100 g)). The average of conjugated linoleic acid (CLA) content in EIKBO (2.20 ± 0.22 (g/100 g)) was higher than that in CIKBO (0.92 ± 0.25 (g/100 g)) (p < .05). Therefore, EKIBO is considered the superior natural supply of CLA.

20.
Int J Biol Macromol ; 249: 126086, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37532194

RESUMO

This study introduces a sustainable approach to simultaneously produce pectin and phenolic compounds from pistachio industrial waste and applies them in the formulation of low-phenylalanine cookies. The co-optimization process was performed using the microwave-assisted technique and a Box-Behnken design, considering four variables and two responses: pectin yield and total phenolic content (TPC). The co-optimized condition (microwave power of 700 W, irradiation time of 210 s, pH level of 1.02, and LSR of 20 mL/g) resulted in a pectin yield of 15.85 % and a TPC of 10.12 %. The pectin obtained under co-optimized condition was evaluated for its physicochemical, structural, and thermal properties and the phenolic extract for its antiradical activity. Characterization of the pectin sample revealed a high degree of esterification (44.21 %) and a galacturonic acid-rich composition (69.55 %). The average molecular weight of the pectin was determined to be 640.236 kDa. FTIR and 1H NMR spectroscopies confirmed the structure of pectin, with an amorphous nature and high thermal stability observed through XRD and DSC analysis. Additionally, the extract exhibited significant antiradical activity comparable to butylated hydroxyanisole and ascorbic acid. The isolated ingredients were used to formulate low-protein, low-phenylalanine cookies for phenylketonuria patients. The addition of 0.5 % pectin and 1 mL/g extract led to increased moisture content (from 9.05 to 12.89 %) and specific volume (from 7.28 to 9.90 mL/g), decreased hardness (from 19.44 to 10.39 N × 102), and improved antioxidant properties (from 5.15 % to 44.60 % inhibition) of the cookies. Importantly, there was no significant increase observed in the phenylalanine content of the samples with pectin and extract addition. Furthermore, sensory evaluation scores demonstrated significantly higher scores for taste, odor, texture, and overall acceptability in cookies enriched with 0.5 % pectin and 1 mL/g extract, with scores of 4.53, 3.93, 4.40, and 4.60, respectively.


Assuntos
Fenilcetonúrias , Pistacia , Humanos , Pectinas/química , Resíduos Industriais/análise , Frutas/química , Fenóis/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA