RESUMO
Bispyridinylidenes are neutral organic molecules capable of two-electron oxidation at a range of redox potentials that are widely tunable by choice of substituent, making them attractive as homogeneous organic reductants and active materials in redox flow batteries. In an effort to readily predict the redox potentials of this important class of compounds, we have developed correlations between the experimental redox potentials and both experimental and theoretical predictors. On the experimental side, we show that multinuclear NMR chemical shifts of related pyridinium ions correlate well with the redox potentials of bispyridinylidenes, with R2 and standard errors (S) reaching 0.9810 and 0.048â V, respectively, when the 13C (N-CH3) and 1H (ortho) chemical shifts are used together. Theoretical studies of the bispyridinylidenes and their doubly oxidized bipyridinium ions gave a range of predictively valuable equations at various levels of computational cost. This ranged from a simple model using only the EHOMO of the bispyridinylidenes (R2=0.9689; S=0.060â V), to a more computationally intensive model which include solvation effects for both redox states which gave the highest predictive value for all methods (R2=0.9958; S=0.022â V). This work will guide further studies of this important class of molecules.
RESUMO
Bispyridinylidenes (BPYs) have emerged as an important class of neutral organic electron donors, with redox potentials that vary widely with choice of substituent. Methods to predict the effect of substitution on the redox potential are therefore highly desirable. Here we show that the redox potential of BPYs featuring iminophosphorano substituents (R3 P=N-), which represent the most reducing class of BPYs, can be predicted based on the well-known Tolman electronic parameter (TEP) for the respective phosphine fragment (R3 P). Moreover, building on earlier work relating redox potentials to Hammett-type substituent constants, it is now possible to quantitatively predict σp + values for iminophosphorano substituents from TEP values. These results provide a path for precisely tailoring redox potentials of iminophosphorano-substituted BPYs, but also give quantitative descriptors for how these highly versatile iminophosphorano substituents can impact the properties of any molecular scaffold.
RESUMO
Herein, advancements in electroanalytical devices for the simultaneous detection of diverse breast cancer (BC) markers are demonstrated. This article identifies several important areas of exploration for electrochemical diagnostics and highlights important factors that are pivotal for the successful deployment of novel bioanalytical devices. We have highlighted that the limits of detection (LOD) reported for the multiplex electrochemical biosensor can surpass the sensitivity displayed by current clinical standards such as ELISA, FISH, and PCR. HER-2; a breast cancer marker characterised by increased metastatic potential, more aggressive development, and poor clinical outcomes; can be sensed with a LOD of 0.5â ng/ml using electrochemical multiplex platforms, which falls within the range of that measured by ELISA (from picogram/ml to nanogram/ml). Electrochemical multiplex biosensors are reported with detection limits of 0.53â ng/ml and 0.21â U/ml for MUC-1 and CA 15-3, respectively, or 5.8 × 10-3â U/ml for CA 15-3 alone. The sensitivity of electrochemical assays is improved when compared to conventional analysis of MUC-1 protein which is detected at 11-12â ng/ml, and ≤30â U/ml for CA 15-3 in the current clinical blood tests. The LOD for micro-ribonucleic acid (miRNA) biomarkers analyzed by electrochemical multiplex assays were all notedly superior at 9.79 × 10-16â M, 3.58 × 10-15â M, and 2.54 × 10-16â M for miRNA-155, miRNA-21, and miRNA-16, respectively. The dogma in miRNA testing is the qRT-PCR method, which reports ranges in the ng/ml level for the same miRNAs. Breast cancer exosomes, which are being explored as a new frontier of biosensing, have been detected electrochemically with an LOD of 103-108 particles/mL and can exceed detection limits seen by the tracking and analysis of nanoparticles (â¼ 107 particles/ml), flow cytometry, Western blotting and ELISA, etc. A range of concentration at 78-5,000â pg/ml for RANKL and 16-1,000â pg/ml for TNF is reported for ELISA assay while LOD values of 2.6 and 3.0â pg/ml for RANKL and TNF, respectively, are demonstrated by the electrochemical dual immunoassay platform. Finally, EGFR and VEGF markers can be quantified at much lower concentrations (0.01 and 0.005â pg/ml for EGFR and VEGF, respectively) as compared to their ELISA assays (EGRF at 0.31-20â ng/ml and VEGF at 31.3-2,000â pg/ml). In this study we hope to answer several questions: (1) Are the limits of detection (LODs) reported for multiplex electrochemical biosensors of clinical relevance and how do they compare to well-established methods like ELISA, FISH, or PCR? (2) Can a single sensor electrode be used for the detection of multiple markers from one blood drop? (3) What mechanism of electrochemical biosensing is the most promising, and what technological advancements are needed to utilize these devices for multiplex POC detection? (4) Can nanotechnology advance the sensitive and selective diagnostics of multiple BC biomarkers? (5) Are there preferred receptors (antibody, nucleic acid or their combinations) and preferred biosensor designs (complementary methods, sandwich-type protocols, antibody/aptamer concept, label-free protocol)? (6) Why are we still without FDA-approved electrochemical multiplex devices for BC screening?