RESUMO
Graphene quantum dots (GQDs) are known as suitable material to be applied in different fields such as photodynamic therapy (PDT). Herein, GQDs were synthesized by the pyrolysis method and then decorated with selenium (Se). Afterward, they were combined with methylene blue (MB) to increase singlet oxygen generation as well as to apply them more effectively in the PDT method. Furthermore, GQDs were investigated by transmission electron microscope (TEM), photoluminescence spectrum (PL), Fourier-transform infrared spectroscopy (FTIR), field emission scanning electron microscope (FESEM), reactive oxygen species (ROS) measurement, and cytotoxicity measurement. GQDs showed no dependence on the excitation wavelength. The result of ROS measurement proves that the combination of GQD-Se and MB increases singlet oxygen production. Moreover, afterglow measurement approved the beneficial effect of GQD-Se on even deep and near skin tumor treatment. Cytotoxicity measurements under dark conditions, cell viability, and the side effects on human cells were determined by (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) (MTT) assay. Our findings show that under dark conditions, even high concentrations of nanoparticles have no significant effect on cell viability. These findings and the high biocompatibility of GQDs indicate the effective application of GQD-Se-MB in PDT.