Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Clin Exp Immunol ; 213(3): 265-275, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37338154

RESUMO

MAS825, a bispecific IL-1ß/IL-18 monoclonal antibody, could improve clinical outcomes in COVID-19 pneumonia by reducing inflammasome-mediated inflammation. Hospitalized non-ventilated patients with COVID-19 pneumonia (n = 138) were randomized (1:1) to receive MAS825 (10 mg/kg single i.v.) or placebo in addition to standard of care (SoC). The primary endpoint was the composite Acute Physiology and Chronic Health Evaluation II (APACHE II) score on Day 15 or on the day of discharge (whichever was earlier) with worst-case imputation for death. Other study endpoints included safety, C-reactive protein (CRP), SARS-CoV-2 presence, and inflammatory markers. On Day 15, the APACHE II score was 14.5 ± 1.87 and 13.5 ± 1.8 in the MAS825 and placebo groups, respectively (P = 0.33). MAS825 + SoC led to 33% relative reduction in intensive care unit (ICU) admissions, ~1 day reduction in ICU stay, reduction in mean duration of oxygen support (13.5 versus 14.3 days), and earlier clearance of virus on Day 15 versus placebo + SoC group. On Day 15, compared with placebo group, patients treated with MAS825 + SoC showed a 51% decrease in CRP levels, 42% lower IL-6 levels, 19% decrease in neutrophil levels, and 16% lower interferon-γ levels, indicative of IL-1ß and IL-18 pathway engagement. MAS825 + SoC did not improve APACHE II score in hospitalized patients with severe COVID-19 pneumonia; however, it inhibited relevant clinical and inflammatory pathway biomarkers and resulted in faster virus clearance versus placebo + SoC. MAS825 used in conjunction with SoC was well tolerated. None of the adverse events (AEs) or serious AEs were treatment-related.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Interleucina-18 , Inflamação , Hospitalização , Resultado do Tratamento
2.
Xenobiotica ; 52(1): 65-78, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34761729

RESUMO

MAK683 (N-((5-fluoro-2,3-dihydrobenzofuran-4-yl)methyl)-8-(2-methylpyridin-3-yl)-[1,2,4]triazolo[4,3-c]pyrimidin-5-amine) is a potent and orally bioavailable EED inhibitor for the potential treatment in oncology. Pharmacokinetics (PK) in preclinical species are characterised by low to moderate plasma clearances, high oral exposure, and moderate to high oral bioavailability at the dose of 1-2 mg/kg.A species comparison of the metabolic pathways of MAK683 has been made using [14C]MAK683 incubations with liver microsomes and hepatocytes from rat, dog, cynomolgus monkey, and human. Overall, the in vitro hepatic metabolism pathway of MAK683 in all five species was very complex. A total of 60 metabolites with 19 metabolites >1.5% of the total integrated area in the radiochromatogram of at least one species were identified in five species (rat, mouse, dog, monkey, and human).The primary in vitro hepatic oxidative metabolism pathway identified in humans involved 2-hydroxylation of the dihydrofuran ring to form alcohol (M28), which was in a chemical equilibrium favouring the formation of its aldehyde form. The aldehyde was then oxidised to the carboxylic acid metabolite (M26) or reduced to the O-hydroxyethylphenol (M29). N-dealkylation (M1), 3-hydroxylation of the dihydrofuran ring (M27), N-oxidation of the pyridine moiety (M53), and sulphate conjugation of M28 to form M19 were also important biotransformation pathways in human hepatocytes. The above major human hepatic metabolic pathways were also observed across the animal species (rat, mouse, dog, and monkey) mostly providing precursors for the formation of other metabolites via further oxygenation, glucuronidation, and sulphation pathways.No human-specific metabolites were observed. In addition, in vivo biotransformation was also conducted in bile-duct cannulated (BDC) rat. The metabolism in BDC rat was similar to those observed the in vitro hepatocytes.


Assuntos
Ectoderma , Neoplasias , Animais , Cães , Hepatócitos/metabolismo , Macaca fascicularis , Camundongos , Microssomos Hepáticos/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Ratos
3.
J Pharmacol Exp Ther ; 369(2): 188-199, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30819762

RESUMO

The anabolic effects of ß 2-adrenoceptor (ß 2-AR) agonists on skeletal muscle have been demonstrated in various species. However, the clinical use of ß 2-AR agonists for skeletal muscle wasting conditions has been limited by their undesired cardiovascular effects. Here, we describe the preclinical pharmacological profile of a novel 5-hydroxybenzothiazolone (5-HOB) derived ß 2-AR agonist in comparison with formoterol as a representative ß 2-AR agonist that have been well characterized. In vitro, 5-HOB has nanomolar affinity for the human ß 2-AR and selectivity over the ß 1-AR and ß 3-AR. 5-HOB also shows potent agonistic activity at the ß 2-AR in primary skeletal muscle myotubes and induces hypertrophy of skeletal muscle myotubes. Compared with formoterol, 5-HOB demonstrates comparable full-agonist activity on cAMP production in skeletal muscle cells and skeletal muscle tissue-derived membranes. In contrast, a greatly reduced intrinsic activity was determined in cardiomyocytes and cell membranes prepared from the rat heart. In addition, 5-HOB shows weak effects on chronotropy, inotropy, and vascular relaxation compared with formoterol. In vivo, 5-HOB significantly increases hind limb muscle weight in rats with attenuated effects on heart weight and ejection fraction, unlike formoterol. Furthermore, changes in cardiovascular parameters after bolus subcutaneous treatment in rats and rhesus monkeys are significantly lower with 5-HOB compared with formoterol. In conclusion, the pharmacological profile of 5-HOB indicates superior tissue selectivity compared with the conventional ß 2-AR agonist formoterol in preclinical studies and supports the notion that such tissue-selective agonists should be investigated for the safe treatment of muscle-wasting conditions without cardiovascular limiting effects.


Assuntos
Benzotiazóis/química , Benzotiazóis/farmacologia , Sistema Cardiovascular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Receptores Adrenérgicos beta 2/metabolismo , Segurança , Agonistas de Receptores Adrenérgicos beta 2/efeitos adversos , Agonistas de Receptores Adrenérgicos beta 2/química , Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Agonistas de Receptores Adrenérgicos beta 2/uso terapêutico , Anabolizantes/efeitos adversos , Anabolizantes/química , Anabolizantes/farmacologia , Anabolizantes/uso terapêutico , Animais , Benzotiazóis/efeitos adversos , Benzotiazóis/uso terapêutico , Células CHO , Cricetulus , Coração/efeitos dos fármacos , Humanos , Hipertrofia/tratamento farmacológico , Cinética , Macaca mulatta , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Miócitos Cardíacos/efeitos dos fármacos , Ratos
4.
J Med Chem ; 67(6): 5093-5108, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38476002

RESUMO

Leukotriene A4 hydrolase (LTA4H) is the final and rate-limiting enzyme in the biosynthesis of pro-inflammatory leukotriene B4 (LTB4). Preclinical studies have provided strong evidence that LTA4H is an attractive drug target for the treatment of chronic inflammatory diseases. Here, we describe the transformation of compound 2, a fragment-like hit, into the potent inhibitor of LTA4H 3. Our strategy involved two key steps. First, we aimed to increase the polarity of fragment 2 to improve its drug-likeness, particularly its solubility, while preserving both its promising potency and low molecular weight. Second, we utilized structural information and incorporated a basic amino function, which allowed for the formation of an essential hydrogen bond with Q136 of LTA4H and consequently enhanced the potency. Compound 3 exhibited exceptional selectivity and showed oral efficacy in a KRN passive serum-induced arthritis model in mice. The anticipated human dose to achieve 90% target engagement at the trough concentration was determined to be 40 mg administered once daily.


Assuntos
Inibidores Enzimáticos , Epóxido Hidrolases , Camundongos , Humanos , Animais , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Leucotrieno B4
5.
Drug Discov Today Technol ; 10(1): e191-8, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24175349

RESUMO

New enabling MS technologies have made it possible to elucidate metabolic pathways present in ex vivo (blood, bile and/or urine) or in vitro (liver microsomes, hepatocytes and/or S9) samples. When investigating samples from high throughput assays the challenge that the user is facing now is to extract the appropriate information and compile it so that it is understandable to all. Medicinal chemist may then design the next generation of (better) drug candidates combining the needs for potency and metabolic stability and their synthetic creativity. This review focuses on the comparison of these enabling MS technologies and the IT tools developed for their interpretation.


Assuntos
Ensaios de Triagem em Larga Escala , Preparações Farmacêuticas/metabolismo , Animais , Humanos , Espectrometria de Massas , Estrutura Molecular , Peso Molecular
6.
J Med Chem ; 66(23): 16410-16425, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-38015154

RESUMO

The discovery of chiral amino alcohols derived from our previously disclosed clinical LTA4H inhibitor LYS006 is described. In a biochemical assay, their optical antipodes showed similar potencies, which could be rationalized by the cocrystal structures of these compounds bound to LTA4H. Despite comparable stabilities in liver microsomes, they showed distinct in vivo PK properties. Selective O-phosphorylation of the (R)-enantiomers in blood led to clearance values above the hepatic blood flow, whereas the (S)-enantiomers were unaffected and exhibited satisfactory metabolic stabilities in vivo. Introduction of two pyrazole rings led to compound (S)-2 with a more balanced distribution of polarity across the molecule, exhibiting high selectivity and excellent potency in vitro and in vivo. Furthermore, compound (S)-2 showed favorable profiles in 16-week IND-enabling toxicology studies in dogs and rats. Based on allometric scaling and potency in whole blood, compound (S)-2 has the potential for a low oral efficacious dose administered once daily.


Assuntos
Epóxido Hidrolases , Fígado , Ratos , Animais , Cães , Epóxido Hidrolases/metabolismo , Fígado/metabolismo , Microssomos Hepáticos/metabolismo
7.
J Med Chem ; 65(12): 8345-8379, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35500094

RESUMO

Balanced pan-class I phosphoinositide 3-kinase inhibition as an approach to cancer treatment offers the prospect of treating a broad range of tumor types and/or a way to achieve greater efficacy with a single inhibitor. Taking buparlisib as the starting point, the balanced pan-class I PI3K inhibitor 40 (NVP-CLR457) was identified with what was considered to be a best-in-class profile. Key to the optimization to achieve this profile was eliminating a microtubule stabilizing off-target activity, balancing the pan-class I PI3K inhibition profile, minimizing CNS penetration, and developing an amorphous solid dispersion formulation. A rationale for the poor tolerability profile of 40 in a clinical study is discussed.


Assuntos
Antineoplásicos , Fosfatidilinositol 3-Quinases , Aminopiridinas/farmacologia , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Compostos Orgânicos , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
8.
J Med Chem ; 65(5): 4350-4366, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35195996

RESUMO

Mutations in MEK1/2 have been described as a resistance mechanism to BRAF/MEK inhibitor treatment. We report the discovery of a novel ATP-competitive MEK1/2 inhibitor with efficacy in wildtype (WT) and mutant MEK12 models. Starting from a HTS hit, we obtained selective, cellularly active compounds that showed equipotent inhibition of WT MEK1/2 and a panel of MEK1/2 mutant cell lines. Using a structure-based approach, the optimization addressed the liabilities by systematic analysis of molecular matched pairs (MMPs) and ligand conformation. Addition of only three heavy atoms to early tool compound 6 removed Cyp3A4 liabilities and increased the cellular potency by 100-fold, while reducing log P by 5 units. Profiling of MAP855, compound 30, in pharmacokinetic-pharmacodynamic and efficacy studies in BRAF-mutant models showed comparable efficacy to clinical MEK1/2 inhibitors. Compound 30 is a novel highly potent and selective MEK1/2 kinase inhibitor with equipotent inhibition of WT and mutant MEK1/2, whose drug-like properties allow further investigation in the mutant MEK setting upon BRAF/MEK therapy.


Assuntos
Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas B-raf , Trifosfato de Adenosina/metabolismo , Linhagem Celular Tumoral , MAP Quinase Quinase 1 , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/genética
9.
J Med Chem ; 65(7): 5317-5333, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35352560

RESUMO

Polycomb Repressive Complex 2 (PRC2) plays an important role in transcriptional regulation during animal development and in cell differentiation, and alteration of PRC2 activity has been associated with cancer. On a molecular level, PRC2 catalyzes methylation of histone H3 lysine 27 (H3K27), resulting in mono-, di-, or trimethylated forms of H3K27, of which the trimethylated form H3K27me3 leads to transcriptional repression of polycomb target genes. Previously, we have shown that binding of the low-molecular-weight compound EED226 to the H3K27me3 binding pocket of the regulatory subunit EED can effectively inhibit PRC2 activity in cells and reduce tumor growth in mouse xenograft models. Here, we report the stepwise optimization of the tool compound EED226 toward the potent and selective EED inhibitor MAK683 (compound 22) and its subsequent preclinical characterization. Based on a balanced PK/PD profile, efficacy, and mitigated risk of forming reactive metabolites, MAK683 has been selected for clinical development.


Assuntos
Histonas , Neoplasias , Animais , Inibidores Enzimáticos , Histonas/metabolismo , Humanos , Metilação , Camundongos , Neoplasias/tratamento farmacológico , Complexo Repressor Polycomb 2
10.
J Med Chem ; 63(21): 12542-12573, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-32930584

RESUMO

FGF19 signaling through the FGFR4/ß-klotho receptor complex has been shown to be a key driver of growth and survival in a subset of hepatocellular carcinomas, making selective FGFR4 inhibition an attractive treatment opportunity. A kinome-wide sequence alignment highlighted a poorly conserved cysteine residue within the FGFR4 ATP-binding site at position 552, two positions beyond the gate-keeper residue. Several strategies for targeting this cysteine to identify FGFR4 selective inhibitor starting points are summarized which made use of both rational and unbiased screening approaches. The optimization of a 2-formylquinoline amide hit series is described in which the aldehyde makes a hemithioacetal reversible-covalent interaction with cysteine 552. Key challenges addressed during the optimization are improving the FGFR4 potency, metabolic stability, and solubility leading ultimately to the highly selective first-in-class clinical candidate roblitinib.


Assuntos
Piperazinas/química , Inibidores de Proteínas Quinases/química , Piridinas/química , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Sequência de Aminoácidos , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cisteína/química , Cães , Desenho de Fármacos , Meia-Vida , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Camundongos , Microssomos Hepáticos/metabolismo , Simulação de Dinâmica Molecular , Piperazinas/metabolismo , Piperazinas/farmacologia , Piperazinas/uso terapêutico , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Piridinas/metabolismo , Piridinas/farmacologia , Piridinas/uso terapêutico , Ratos , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
11.
ACS Med Chem Lett ; 10(12): 1655-1660, 2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31857842

RESUMO

In MLL-rearranged cancer cells, disruptor of telomeric silencing 1-like protein (DOT1L) is aberrantly recruited to ectopic loci leading to local hypermethylation of H3K79 and consequently misexpression of leukemogenic genes. A structure-guided optimization of a HTS hit led to the discovery of DOT1L inhibitors with subnanomolar potency, allowing testing of the therapeutic principle of DOT1L inhibition in a preclinical mouse tumor xenograft model. Compounds displaying good exposure in mouse and nanomolar inhibition of target gene expression in cells were obtained and tested in vivo.

12.
Mol Cancer Ther ; 18(12): 2194-2206, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31409633

RESUMO

Hepatocellular carcinoma (HCC) is the most common primary malignancy of the liver and it is the third leading cause of cancer-related deaths worldwide. Recently, aberrant signaling through the FGF19/FGFR4 axis has been implicated in HCC. Here, we describe the development of FGF401, a highly potent and selective, first in class, reversible-covalent small-molecule inhibitor of the kinase activity of FGFR4. FGF401 is exquisitely selective for FGFR4 versus the other FGFR paralogues FGFR1, FGFR2, FGFR3, and all other kinases in the kinome. FGF401 has excellent drug-like properties showing a robust pharmacokinetic/pharmacodynamics/efficacy relationship, driven by a fraction of time above the phospho-FGFR4 IC90 value. FGF401 has remarkable antitumor activity in mice bearing HCC tumor xenografts and patient-derived xenograft models that are positive for FGF19, FGFR4, and KLB. FGF401 is the first FGFR4 inhibitor to enter clinical trials, and a phase I/II study is currently ongoing in HCC and other solid malignancies.


Assuntos
Fatores de Crescimento de Fibroblastos/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Animais , Humanos , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Nus , Transdução de Sinais
13.
J Chromatogr A ; 1157(1-2): 65-72, 2007 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-17466316

RESUMO

The determination of radioactivity from metabolite patterns in ADME studies in a low radioactivity/residue situation is a very challenging process requiring special technologies. The recently introduced TopCount technology uses LumaPlates for the collection of the column effluent after HPLC separation to subsequently determine radioactivity for the generation of the metabolite profile. Samples from drug metabolism studies were used to compare the performance of the widely used LumaPlates with Cytostar-T plates regarding sensitivity and recovery of metabolites for structure elucidation by MS. Optimized counting parameters were investigated for the Cytostar-T plates. This had led to higher sensitivity and therefore to a preferential signal to noise ratio. Metabolites which were collected into Cytostar-T instead of LumaPlates could be easily recovered and directly used for structure elucidation by MS. The full scan mass spectra of recovered metabolites showed higher quality allowing the characterization of metabolites without any further sample pre-treatment. This is a major advantage which could further speed-up the structure elucidation process of metabolites in complex biological matrices.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Preparações Farmacêuticas/metabolismo , Espectrometria de Massas , Preparações Farmacêuticas/química , Contagem de Cintilação , Sensibilidade e Especificidade
14.
Nat Commun ; 7: 13166, 2016 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-27774986

RESUMO

The COP9 signalosome (CSN) is a central component of the activation and remodelling cycle of cullin-RING E3 ubiquitin ligases (CRLs), the largest enzyme family of the ubiquitin-proteasome system in humans. CRLs are implicated in the regulation of numerous cellular processes, including cell cycle progression and apoptosis, and aberrant CRL activity is frequently associated with cancer. Remodelling of CRLs is initiated by CSN-catalysed cleavage of the ubiquitin-like activator NEDD8 from CRLs. Here we describe CSN5i-3, a potent, selective and orally available inhibitor of CSN5, the proteolytic subunit of CSN. The compound traps CRLs in the neddylated state, which leads to inactivation of a subset of CRLs by inducing degradation of their substrate recognition module. CSN5i-3 differentially affects the viability of tumour cell lines and suppresses growth of a human xenograft in mice. Our results provide insights into how CSN regulates CRLs and suggest that CSN5 inhibition has potential for anti-tumour therapy.


Assuntos
Antineoplásicos/farmacologia , Azepinas/farmacologia , Complexo do Signalossomo COP9/antagonistas & inibidores , Regulação Neoplásica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Linfoma Anaplásico de Células Grandes/tratamento farmacológico , Pirazóis/farmacologia , Ubiquitina-Proteína Ligases/genética , Animais , Antineoplásicos/síntese química , Azepinas/síntese química , Complexo do Signalossomo COP9/genética , Complexo do Signalossomo COP9/metabolismo , Feminino , Células HCT116 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Linfoma Anaplásico de Células Grandes/genética , Linfoma Anaplásico de Células Grandes/metabolismo , Linfoma Anaplásico de Células Grandes/patologia , Camundongos , Camundongos SCID , Terapia de Alvo Molecular , Proteína NEDD8/genética , Proteína NEDD8/metabolismo , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Processamento de Proteína Pós-Traducional , Proteólise/efeitos dos fármacos , Pirazóis/síntese química , Células THP-1 , Carga Tumoral/efeitos dos fármacos , Ubiquitina-Proteína Ligases/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
15.
ACS Med Chem Lett ; 7(8): 735-40, 2016 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-27563395

RESUMO

Oncogenic MLL fusion proteins aberrantly recruit Dot1L, a histone methyltransferase, to ectopic loci, leading to local hypermethylation of H3K79 and misexpression of HoxA genes driving MLL-rearranged leukemias. Inhibition of the methyltransferase activity of Dot1L in this setting is predicted to reverse aberrant H3K79 methylation, leading to repression of leukemogenic genes and tumor growth inhibition. In the context of our Dot1L drug discovery program, high-throughput screening led to the identification of 2, a weak Dot1L inhibitor with an unprecedented, induced pocket binding mode. A medicinal chemistry campaign, strongly guided by structure-based consideration and ligand-based morphing, enabled the discovery of 12 and 13, potent, selective, and structurally completely novel Dot1L inhibitors.

16.
Org Lett ; 4(22): 3815-8, 2002 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-12599466

RESUMO

[formula: see text] 3-Cyano epothilones 15-18 are the only examples of non-hydroxy C-3-substituted analogues. Their tubulin binding affinity and cytotoxicity provide meaningful structure-activity relationship information on the dependence of C-1/C-3 conformation upon activity. 12-Cyano epothilone 24 has improved pH stability over epothilone B, and its activity further supports the hypothesis that C-12 stereochemistry is not critical for tubulin affinity.


Assuntos
Epotilonas/síntese química , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Divisão Celular/efeitos dos fármacos , Estabilidade de Medicamentos , Epotilonas/química , Epotilonas/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Estrutura Molecular , Relação Estrutura-Atividade , Tubulina (Proteína)/efeitos dos fármacos , Tubulina (Proteína)/metabolismo , Células Tumorais Cultivadas
17.
Mutat Res ; 537(2): 151-68, 2003 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-12787820

RESUMO

Different variants of the comet assay were used to study the genotoxic and cytotoxic properties of the following eight compounds: chloral hydrate, colchicine, hydroquinone, DL-menthol, mitomycin C, sodium iodoacetate, thimerosal and valinomycin. Colchicine, mitomycin C, sodium iodoacetate and thimerosal induced genotoxic effects. The other compounds were found to be inactive. The compounds were tested in the standard comet assay as well as in the all cell comet assay (recovery of floating cells after treatment), designed in our laboratory for adherently-growing cells. This latter procedure proved to be more adequate for the assessment of the cytotoxicity for some of the compounds tested (hydroquinone, DL-menthol, thimerosal, valinomycin). Colchicine was positive in the standard comet assay (3h treatment) and in the all cell comet assay (24h treatment). Sodium iodoacetate and thimerosal were positive in the standard and/or the all cell comet assay. Chloral hydrate, hydroquinone, sodium iodoacetate, mitomycin C and thimerosal were also tested in the modified comet assay using lysed cells. Mitomycin C and thimerosal showed effects in this assay, whereas sodium iodoacetate was inactive. This indicates that it does not induce direct DNA damage. Compounds that are known or suspected to form DNA-DNA cross-links or DNA-protein cross-links (chloral hydrate, hydroquinone, mitomycin C and thimerosal) were checked for their ability to reduce ethyl methanesulfonate (EMS)-induced DNA damage. This mode of action could be demonstrated for mitomycin C only.


Assuntos
Células CHO/efeitos dos fármacos , Ensaio Cometa , Mutagênicos/toxicidade , Xenobióticos/toxicidade , Animais , Células CHO/patologia , Adesão Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cricetinae , DNA/efeitos dos fármacos , Dano ao DNA , Relação Dose-Resposta a Droga , Mesocricetus , Mutagênicos/classificação , Xenobióticos/classificação
18.
Angew Chem Int Ed Engl ; 38(13-14): 1971-1974, 1999 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34182693

RESUMO

A bothersome side reaction in the last step of a total synthesis of epothilone led to the formation of the thiazol-N-oxide 1. Obtained from epothilones prepared by fermentation, these biologically active N-oxides allow the extremely short synthesis of the highly active epothilones 2 with modified side chains by an O-acyl rearrangement.

19.
Rapid Commun Mass Spectrom ; 21(6): 961-70, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17299833

RESUMO

For absorption, distribution, metabolism and excretion (ADME) studies of drug candidates, mass spectrometry (MS) has become an indispensable tool for the characterization of biotransformation pathways. Samples from in vivo animal studies such as plasma, tissue extracts or excreta contain vast amounts of endogenous compounds. Therefore, the generation of metabolite patterns requires dedicated sample pre-treatment and sophisticated separation methods. Methodologies used for metabolite separation are often inappropriate for structure elucidation. Therefore, a two-dimensional liquid chromatography (LC) approach in combination with MS was developed. Study samples were analyzed using high-performance liquid chromatography (HPLC) for the generation of a qualitative and quantitative metabolite pattern (first dimension) with high reproducibility and recovery without extensive sample pre-treatment. Selected radioactive metabolite fractions were then applied to micro-HPLC with off-line radioactivity monitoring and subsequent MS detection (second dimension). Applying the two-dimensional HPLC/MS approach not only major metabolites could be identified, even minor and trace metabolites were characterized. The usage of sampled metabolite fractions allowed also the re-analysis of specific metabolites for additional investigations (e.g. H/D exchange experiments or product ion scanning experiments). It could be clearly shown that the two-dimensional HPLC/MS approach showed mass spectra with higher sensitivity and selectivity significantly improving the characterization of minor and trace metabolites in in vivo ADME studies.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Fezes/química , Espectrometria de Massas/métodos , Preparações Farmacêuticas/química , Preparações Farmacêuticas/urina , Urinálise/métodos , Animais , Camundongos , Conformação Molecular , Ratos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
20.
Rapid Commun Mass Spectrom ; 21(6): 937-44, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17295360

RESUMO

The study of the metabolic fate of drugs is essential for the safety assessment of new compounds in the drug development process. However, the characterization and structural elucidation of metabolites from in vivo experiments is still a very challenging task. In this paper, we compare a two-dimensional liquid chromatography/mass spectrometry (LC/MS) approach using either a capillary LC/MS system or the recently introduced chip-based nanoelectrospray/MS system (Nanomate) as the second dimension for structural elucidation of metabolites by MS. More than 30 radioactive fractions of a chromatographic separation from a human urine sample were analyzed and 54 metabolites could be identified. The long persisting and stable nanoelectrospray enabled the search for unknown metabolites by precursor-ion scanning experiments followed by product-ion scanning experiments of potential metabolites using a quadrupole time-of-flight (qTOF) mass spectrometer. The number of fragments produced by nanoelectrospray with product-ion scanning was significantly higher compared to LC/MS experiments with in-source fragmentation. Therefore, the assignment of possible modifications in metabolites to certain moieties of the drug could be investigated with higher accuracy. The capillary LC/MS system for the second dimension was more sensitive in the case of low abundant metabolites. These metabolites could not be detected by direct nanoelectrospray infusion, which limits the application of the Nanomate for trace metabolites.


Assuntos
Cromatografia Líquida de Alta Pressão/instrumentação , Eletroforese em Gel Bidimensional/instrumentação , Dispositivos Lab-On-A-Chip , Nanotecnologia/instrumentação , Espectrometria de Massas por Ionização por Electrospray/instrumentação , Urinálise/instrumentação , Cromatografia Líquida de Alta Pressão/métodos , Eletroforese em Gel Bidimensional/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Procedimentos Analíticos em Microchip/métodos , Nanotecnologia/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Espectrometria de Massas por Ionização por Electrospray/métodos , Urinálise/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA