Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
RNA ; 30(9): 1141-1150, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-38942480

RESUMO

SARS-CoV-2, the causative virus of the COVID-19 pandemic, follows SARS and MERS as recent zoonotic coronaviruses causing severe respiratory illness and death in humans. The recurrent impact of zoonotic coronaviruses demands a better understanding of their fundamental molecular biochemistry. Nucleoside modifications, which modulate many steps of the RNA life cycle, have been found in SARS-CoV-2 RNA, although whether they confer a pro- or antiviral effect is unknown. Regardless, the viral RNA-dependent RNA polymerase will encounter these modifications as it transcribes through the viral genomic RNA. We investigated the functional consequences of nucleoside modification on the pre-steady state kinetics of SARS-CoV-2 RNA-dependent RNA transcription using an in vitro reconstituted transcription system with modified RNA templates. Our findings show that N 6-methyladenosine and 2'-O-methyladenosine modifications slow the rate of viral transcription at magnitudes specific to each modification, which has the potential to impact SARS-CoV-2 genome maintenance.


Assuntos
Adenosina , RNA Viral , SARS-CoV-2 , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Humanos , Transcrição Viral/genética , COVID-19/virologia , COVID-19/genética , Transcrição Gênica , Genoma Viral , RNA Polimerase Dependente de RNA/metabolismo , RNA Polimerase Dependente de RNA/genética
2.
Int J Mol Sci ; 25(2)2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38255809

RESUMO

Antibiotic resistance remains a pressing global concern, with most antibiotics targeting the bacterial ribosome or a limited range of proteins. One class of underexplored antibiotic targets is bacterial riboswitches, structured RNA elements that regulate key biosynthetic pathways by binding a specific ligand. We developed a methodology termed Fluorescent Ligand Equilibrium Displacement (FLED) to rapidly discover small molecules that bind the flavin mononucleotide (FMN) riboswitch. FLED leverages intrinsically fluorescent FMN and the quenching effect on RNA binding to create a label-free, in vitro method to identify compounds that can bind the apo population of riboswitch in a system at equilibrium. The response difference between known riboswitch ligands and controls demonstrates the robustness of the method for high-throughput screening. An existing drug discovery library that was screened using FLED resulted in a final hit rate of 0.67%. The concentration response of each hit was determined and revealed a variety of approximate effective concentration values. Our preliminary screening data support the use of FLED to identify small molecules for medicinal chemistry development as FMN riboswitch-targeted antibiotic compounds. This robust, label-free, and cell-free method offers a strong alternative to other riboswitch screening methods and can be adapted to a variety of laboratory setups.


Assuntos
Riboswitch , Ligantes , Antibacterianos/farmacologia , Química Farmacêutica , Corantes , RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA