Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 324
Filtrar
1.
Cell ; 172(3): 534-548.e19, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29275861

RESUMO

Many tumors produce platelet-derived growth factor (PDGF)-DD, which promotes cellular proliferation, epithelial-mesenchymal transition, stromal reaction, and angiogenesis through autocrine and paracrine PDGFRß signaling. By screening a secretome library, we found that the human immunoreceptor NKp44, encoded by NCR2 and expressed on natural killer (NK) cells and innate lymphoid cells, recognizes PDGF-DD. PDGF-DD engagement of NKp44 triggered NK cell secretion of interferon gamma (IFN)-γ and tumor necrosis factor alpha (TNF-α) that induced tumor cell growth arrest. A distinctive transcriptional signature of PDGF-DD-induced cytokines and the downregulation of tumor cell-cycle genes correlated with NCR2 expression and greater survival in glioblastoma. NKp44 expression in mouse NK cells controlled the dissemination of tumors expressing PDGF-DD more effectively than control mice, an effect enhanced by blockade of the inhibitory receptor CD96 or CpG-oligonucleotide treatment. Thus, while cancer cell production of PDGF-DD supports tumor growth and stromal reaction, it concomitantly activates innate immune responses to tumor expansion.


Assuntos
Neoplasias Encefálicas/imunologia , Pontos de Checagem do Ciclo Celular , Glioblastoma/imunologia , Células Matadoras Naturais/imunologia , Fator de Crescimento Derivado de Plaquetas/metabolismo , Animais , Neoplasias Encefálicas/patologia , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Feminino , Glioblastoma/patologia , Humanos , Imunidade Inata , Interferon gama/metabolismo , Células MCF-7 , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptor 2 Desencadeador da Citotoxicidade Natural/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
2.
Cell ; 159(5): 1070-1085, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25416946

RESUMO

Hematopoietic stem cells (HSCs) underlie the production of blood and immune cells for the lifetime of an organism. In vertebrate embryos, HSCs arise from the unique transdifferentiation of hemogenic endothelium comprising the floor of the dorsal aorta during a brief developmental window. To date, this process has not been replicated in vitro from pluripotent precursors, partly because the full complement of required signaling inputs remains to be determined. Here, we show that TNFR2 via TNF? activates the Notch and NF-?B signaling pathways to establish HSC fate, indicating a requirement for inflammatory signaling in HSC generation. We determine that primitive neutrophils are the major source of TNF?, assigning a role for transient innate immune cells in establishing the HSC program. These results demonstrate that proinflammatory signaling, in the absence of infection, is utilized by the developing embryo to generate the lineal precursors of the adult hematopoietic system.


Assuntos
Células-Tronco Hematopoéticas/metabolismo , Transdução de Sinais , Animais , Embrião não Mamífero/metabolismo , Hematopoese , Células-Tronco Hematopoéticas/citologia , NF-kappa B/metabolismo , Neutrófilos/metabolismo , Receptores Notch/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Peixe-Zebra/metabolismo
3.
Nature ; 623(7986): 432-441, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37914932

RESUMO

Chromatin accessibility is essential in regulating gene expression and cellular identity, and alterations in accessibility have been implicated in driving cancer initiation, progression and metastasis1-4. Although the genetic contributions to oncogenic transitions have been investigated, epigenetic drivers remain less understood. Here we constructed a pan-cancer epigenetic and transcriptomic atlas using single-nucleus chromatin accessibility data (using single-nucleus assay for transposase-accessible chromatin) from 225 samples and matched single-cell or single-nucleus RNA-sequencing expression data from 206 samples. With over 1 million cells from each platform analysed through the enrichment of accessible chromatin regions, transcription factor motifs and regulons, we identified epigenetic drivers associated with cancer transitions. Some epigenetic drivers appeared in multiple cancers (for example, regulatory regions of ABCC1 and VEGFA; GATA6 and FOX-family motifs), whereas others were cancer specific (for example, regulatory regions of FGF19, ASAP2 and EN1, and the PBX3 motif). Among epigenetically altered pathways, TP53, hypoxia and TNF signalling were linked to cancer initiation, whereas oestrogen response, epithelial-mesenchymal transition and apical junction were tied to metastatic transition. Furthermore, we revealed a marked correlation between enhancer accessibility and gene expression and uncovered cooperation between epigenetic and genetic drivers. This atlas provides a foundation for further investigation of epigenetic dynamics in cancer transitions.


Assuntos
Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Neoplasias , Humanos , Hipóxia Celular , Núcleo Celular , Cromatina/genética , Cromatina/metabolismo , Elementos Facilitadores Genéticos/genética , Epigênese Genética/genética , Transição Epitelial-Mesenquimal , Estrogênios/metabolismo , Perfilação da Expressão Gênica , Proteínas Ativadoras de GTPase/metabolismo , Metástase Neoplásica , Neoplasias/classificação , Neoplasias/genética , Neoplasias/patologia , Sequências Reguladoras de Ácido Nucleico/genética , Análise de Célula Única , Fatores de Transcrição/metabolismo
4.
Nature ; 608(7923): 552-557, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35948636

RESUMO

As the climate changes, warmer spring temperatures are causing earlier leaf-out1-3 and commencement of CO2 uptake1,3 in temperate deciduous forests, resulting in a tendency towards increased growing season length3 and annual CO2 uptake1,3-7. However, less is known about how spring temperatures affect tree stem growth8,9, which sequesters carbon in wood that has a long residence time in the ecosystem10,11. Here we show that warmer spring temperatures shifted stem diameter growth of deciduous trees earlier but had no consistent effect on peak growing season length, maximum growth rates, or annual growth, using dendrometer band measurements from 440 trees across two forests. The latter finding was confirmed on the centennial scale by 207 tree-ring chronologies from 108 forests across eastern North America, where annual ring width was far more sensitive to temperatures during the peak growing season than in the spring. These findings imply that any extra CO2 uptake in years with warmer spring temperatures4,5 does not significantly contribute to increased sequestration in long-lived woody stem biomass. Rather, contradicting projections from global carbon cycle models1,12, our empirical results imply that warming spring temperatures are unlikely to increase woody productivity enough to strengthen the long-term CO2 sink of temperate deciduous forests.


Assuntos
Aquecimento Global , Estações do Ano , Temperatura , Árvores , Aclimatação , Biomassa , Dióxido de Carbono/metabolismo , Sequestro de Carbono , Modelos Climáticos , Florestas , Aquecimento Global/estatística & dados numéricos , América do Norte , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Fatores de Tempo , Árvores/anatomia & histologia , Árvores/classificação , Árvores/crescimento & desenvolvimento , Árvores/metabolismo , Madeira/crescimento & desenvolvimento , Madeira/metabolismo
5.
Proc Natl Acad Sci U S A ; 121(8): e2306973121, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38346200

RESUMO

Integrating multimodal neuro- and nanotechnology-enabled precision immunotherapies with extant systemic immunotherapies may finally provide a significant breakthrough for combatting glioblastoma (GBM). The potency of this approach lies in its ability to train the immune system to efficiently identify and eradicate cancer cells, thereby creating anti-tumor immune memory while minimizing multi-mechanistic immune suppression. A critical aspect of these therapies is the controlled, spatiotemporal delivery of structurally defined nanotherapeutics into the GBM tumor microenvironment (TME). Architectures such as spherical nucleic acids or poly(beta-amino ester)/dendrimer-based nanoparticles have shown promising results in preclinical models due to their multivalency and abilities to activate antigen-presenting cells and prime antigen-specific T cells. These nanostructures also permit systematic variation to optimize their distribution, TME accumulation, cellular uptake, and overall immunostimulatory effects. Delving deeper into the relationships between nanotherapeutic structures and their performance will accelerate nano-drug development and pave the way for the rapid clinical translation of advanced nanomedicines. In addition, the efficacy of nanotechnology-based immunotherapies may be enhanced when integrated with emerging precision surgical techniques, such as laser interstitial thermal therapy, and when combined with systemic immunotherapies, particularly inhibitors of immune-mediated checkpoints and immunosuppressive adenosine signaling. In this perspective, we highlight the potential of emerging treatment modalities, combining advances in biomedical engineering and neurotechnology development with existing immunotherapies to overcome treatment resistance and transform the management of GBM. We conclude with a call to action for researchers to leverage these technologies and accelerate their translation into the clinic.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Nanopartículas , Nanoestruturas , Humanos , Glioblastoma/patologia , Imunoterapia/métodos , Nanopartículas/uso terapêutico , Nanopartículas/química , Nanotecnologia , Nanoestruturas/química , Microambiente Tumoral , Neoplasias Encefálicas/patologia
6.
Osteoporos Int ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839655

RESUMO

In severe osteoporosis, the optimal approach for sequential treatment between denosumab and romosozumab is unclear. We utilised a novel overlapping strategy in three patients with very-high fracture risk despite long-term denosumab which led to greater bone density improvements than previously reported with standard approaches. Larger confirmatory prospective studies are needed. PURPOSE/INTRODUCTION: In patients with severe osteoporosis, the optimal approach for sequential treatment between denosumab and romosozumab has not been established. The ideal strategy would maximise gains in bone mineral density (BMD) with romosozumab and effectively mitigate the risk of rebound increased bone turnover when sequencing from denosumab. Limited studies exploring the sequence from denosumab to romosozumab report only modest-to-no improvement in BMD and inadequate suppression of rebound bone turnover. METHODS: We describe three patients with severe osteoporosis and multiple fragility fractures despite long-term denosumab. A novel overlapping sequential treatment approach was utilised to maximise therapeutic benefit given these patients had a very high fracture risk. Romosozumab was commenced 3 months after the last denosumab dose. Instead of waiting until completion of romosozumab, denosumab was recommenced 6 months after commencing romosozumab in response to rising bone turnover markers. RESULTS: Patients experienced a ~ 5-22% increase in lumbar spine BMD, and one patient had an 8% increase in total hip BMD after 12 months romosozumab. Serum bone turnover markers demonstrated an anabolic effect of romosozumab occurred despite overlapping treatment with denosumab. Recommencement of denosumab suppressed an increase in bone resorption in all cases. No new vertebral fractures occurred during this treatment. CONCLUSIONS: A novel overlapping sequential treatment approach between denosumab and romosozumab produced greater improvements in lumbar spine and hip BMD than previously reported with standard approaches. Larger prospective controlled studies are needed to confirm these findings and establish the optimal use of romosozumab in patients pre-treated with denosumab to maximise BMD gains and minimise fracture risk.

7.
J Neurooncol ; 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789843

RESUMO

PURPOSE: High-grade glioma (HGG) is the most common and deadly malignant glioma of the central nervous system. The current standard of care includes surgical resection of the tumor, which can lead to functional and cognitive deficits. The aim of this study is to develop models capable of predicting functional outcomes in HGG patients before surgery, facilitating improved disease management and informed patient care. METHODS: Adult HGG patients (N = 102) from the neurosurgery brain tumor service at Washington University Medical Center were retrospectively recruited. All patients completed structural neuroimaging and resting state functional MRI prior to surgery. Demographics, measures of resting state network connectivity (FC), tumor location, and tumor volume were used to train a random forest classifier to predict functional outcomes based on Karnofsky Performance Status (KPS < 70, KPS ≥ 70). RESULTS: The models achieved a nested cross-validation accuracy of 94.1% and an AUC of 0.97 in classifying KPS. The strongest predictors identified by the model included FC between somatomotor, visual, auditory, and reward networks. Based on location, the relation of the tumor to dorsal attention, cingulo-opercular, and basal ganglia networks were strong predictors of KPS. Age was also a strong predictor. However, tumor volume was only a moderate predictor. CONCLUSION: The current work demonstrates the ability of machine learning to classify postoperative functional outcomes in HGG patients prior to surgery accurately. Our results suggest that both FC and the tumor's location in relation to specific networks can serve as reliable predictors of functional outcomes, leading to personalized therapeutic approaches tailored to individual patients.

8.
Cell ; 136(2): 322-36, 2009 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-19167333

RESUMO

The ubiquitin ligase anaphase-promoting complex (APC) recruits the coactivator Cdc20 to drive mitosis in cycling cells. However, the nonmitotic functions of Cdc20-APC have remained unexplored. We report that Cdc20-APC plays an essential role in dendrite morphogenesis in postmitotic neurons. Knockdown of Cdc20 in cerebellar slices and in postnatal rats in vivo profoundly impairs the formation of granule neuron dendrite arbors in the cerebellar cortex. Remarkably, Cdc20 is enriched at the centrosome in neurons, and the centrosomal localization is critical for Cdc20-dependent dendrite development. We also find that the centrosome-associated protein histone deacetylase 6 (HDAC6) promotes the polyubiquitination of Cdc20, stimulates the activity of centrosomal Cdc20-APC, and drives the differentiation of dendrites. These findings define a postmitotic function for Cdc20-APC in the morphogenesis of dendrites in the mammalian brain. The identification of a centrosomal Cdc20-APC ubiquitin signaling pathway holds important implications for diverse biological processes, including neuronal connectivity and plasticity.


Assuntos
Centrossomo/metabolismo , Córtex Cerebelar/citologia , Dendritos/metabolismo , Neurônios/citologia , Transdução de Sinais , Ciclossomo-Complexo Promotor de Anáfase , Animais , Proteínas Cdc20 , Proteínas de Ciclo Celular/metabolismo , Técnicas In Vitro , Proteína 1 Inibidora de Diferenciação/metabolismo , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Complexos Ubiquitina-Proteína Ligase/metabolismo
9.
Cancer Metastasis Rev ; 41(4): 871-898, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35920986

RESUMO

With the application of high throughput sequencing technologies at single-cell resolution, studies of the tumor microenvironment in glioblastoma, one of the most aggressive and invasive of all cancers, have revealed immense cellular and tissue heterogeneity. A unique extracellular scaffold system adapts to and supports progressive infiltration and migration of tumor cells, which is characterized by altered composition, effector delivery, and mechanical properties. The spatiotemporal interactions between malignant and immune cells generate an immunosuppressive microenvironment, contributing to the failure of effective anti-tumor immune attack. Among the heterogeneous tumor cell subpopulations of glioblastoma, glioma stem cells (GSCs), which exhibit tumorigenic properties and strong invasive capacity, are critical for tumor growth and are believed to contribute to therapeutic resistance and tumor recurrence. Here we discuss the role of extracellular matrix and immune cell populations, major components of the tumor ecosystem in glioblastoma, as well as signaling pathways that regulate GSC maintenance and invasion. We also highlight emerging advances in therapeutic targeting of these components.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/tratamento farmacológico , Ecossistema , Glioma/patologia , Microambiente Tumoral , Matriz Extracelular/metabolismo , Células-Tronco Neoplásicas/patologia , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral
10.
J Neurooncol ; 164(2): 309-320, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37668941

RESUMO

PURPOSE: Glioblastoma (GBM) is the most common and aggressive malignant glioma, with an overall median survival of less than two years. The ability to predict survival before treatment in GBM patients would lead to improved disease management, clinical trial enrollment, and patient care. METHODS: GBM patients (N = 133, mean age 60.8 years, median survival 14.1 months, 57.9% male) were retrospectively recruited from the neurosurgery brain tumor service at Washington University Medical Center. All patients completed structural neuroimaging and resting state functional MRI (RS-fMRI) before surgery. Demographics, measures of cortical thickness (CT), and resting state functional network connectivity (FC) were used to train a deep neural network to classify patients based on survival (< 1y, 1-2y, >2y). Permutation feature importance identified the strongest predictors of survival based on the trained models. RESULTS: The models achieved a combined cross-validation and hold out accuracy of 90.6% in classifying survival (< 1y, 1-2y, >2y). The strongest demographic predictors were age at diagnosis and sex. The strongest CT predictors of survival included the superior temporal sulcus, parahippocampal gyrus, pericalcarine, pars triangularis, and middle temporal regions. The strongest FC features primarily involved dorsal and inferior somatomotor, visual, and cingulo-opercular networks. CONCLUSION: We demonstrate that machine learning can accurately classify survival in GBM patients based on multimodal neuroimaging before any surgical or medical intervention. These results were achieved without information regarding presentation symptoms, treatments, postsurgical outcomes, or tumor genomic information. Our results suggest GBMs have a global effect on the brain's structural and functional organization, which is predictive of survival.


Assuntos
Glioblastoma , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , Glioblastoma/diagnóstico por imagem , Glioblastoma/terapia , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos , Neuroimagem , Aprendizado de Máquina
11.
Diabetes Obes Metab ; 25(4): 992-1001, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36515213

RESUMO

AIM: To assess the safety, tolerability and pharmacodynamics (PD) of the ketohexokinase inhibitor PF-06835919 in participants with non-alcoholic fatty liver disease (NAFLD) and type 2 diabetes (T2D). MATERIALS AND METHODS: This double-blind, placebo-controlled, parallel-group study enrolled adults with NAFLD (≥ 8% whole liver fat [WLF] using MRI proton density fat fraction [MRI-PDFF]) and T2D on stable doses of metformin (≥ 500 mg/day). Participants received once-daily placebo, PF-06835919 150 or 300 mg for 16 weeks. Randomization (1:1:1) was via an interactive response technology system. Endpoints included percentage change from baseline (CFB) in WLF using MRI-PDFF (primary endpoint) and CFB in HbA1c (co-primary endpoint) at 16 weeks, PD, safety and tolerability. RESULTS: Among 164 participants randomized and treated, 145 completed the treatment (placebo, n = 50; PF-06835919 150 mg, n = 46; PF-06835919 300 mg, n = 49). At week 16, least squares mean (90% confidence interval) percentage CFB in WLF was -5.26% (-12.86%, 2.99%), -17.05% (-24.01%, -9.46%) and -19.13% (-25.51%, -12.20%) in the placebo, PF-06835919 150-mg and 300-mg groups, respectively (PF-06835919 300-mg group vs. placebo, P = .0288). Modest numerical reductions in HbA1c were observed in all groups that did not reach statistical significance. Treatment-emergent adverse event incidence was similar across groups (40.7%, 45.5% and 32.7% in the placebo, PF-06835919 150-mg and 300-mg groups, respectively), with no apparent dose-related trend. CONCLUSIONS: PF-06835919 administration over 16 weeks was generally safe and well tolerated and resulted in reductions in WLF in participants with NAFLD and T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Metformina , Hepatopatia Gordurosa não Alcoólica , Adulto , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hemoglobinas Glicadas , Metformina/uso terapêutico , Método Duplo-Cego , Resultado do Tratamento
12.
Nature ; 530(7588): 71-6, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26779949

RESUMO

Many procedures in modern clinical medicine rely on the use of electronic implants in treating conditions that range from acute coronary events to traumatic injury. However, standard permanent electronic hardware acts as a nidus for infection: bacteria form biofilms along percutaneous wires, or seed haematogenously, with the potential to migrate within the body and to provoke immune-mediated pathological tissue reactions. The associated surgical retrieval procedures, meanwhile, subject patients to the distress associated with re-operation and expose them to additional complications. Here, we report materials, device architectures, integration strategies, and in vivo demonstrations in rats of implantable, multifunctional silicon sensors for the brain, for which all of the constituent materials naturally resorb via hydrolysis and/or metabolic action, eliminating the need for extraction. Continuous monitoring of intracranial pressure and temperature illustrates functionality essential to the treatment of traumatic brain injury; the measurement performance of our resorbable devices compares favourably with that of non-resorbable clinical standards. In our experiments, insulated percutaneous wires connect to an externally mounted, miniaturized wireless potentiostat for data transmission. In a separate set-up, we connect a sensor to an implanted (but only partially resorbable) data-communication system, proving the principle that there is no need for any percutaneous wiring. The devices can be adapted to sense fluid flow, motion, pH or thermal characteristics, in formats that are compatible with the body's abdomen and extremities, as well as the deep brain, suggesting that the sensors might meet many needs in clinical medicine.


Assuntos
Implantes Absorvíveis , Encéfalo/metabolismo , Eletrônica/instrumentação , Monitorização Fisiológica/instrumentação , Próteses e Implantes , Silício , Implantes Absorvíveis/efeitos adversos , Administração Cutânea , Animais , Temperatura Corporal , Encéfalo/cirurgia , Desenho de Equipamento , Hidrólise , Masculino , Monitorização Fisiológica/efeitos adversos , Especificidade de Órgãos , Pressão , Próteses e Implantes/efeitos adversos , Ratos , Ratos Endogâmicos Lew , Telemetria/instrumentação , Tecnologia sem Fio/instrumentação
13.
Curr Osteoporos Rep ; 20(6): 505-515, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36201122

RESUMO

PURPOSE OF REVIEW: Inhibition of receptor activator of nuclear factor kappa-B ligand (RANKL) with denosumab is an effective treatment in a number of conditions including osteoporosis where suppression of bone resorption is desired. However, denosumab discontinuation is associated with rebound increase in bone resorption and subsequent loss in bone mass and a rapid return to baseline fracture risk. We review recent data on the rebound increase in bone resorption following denosumab discontinuation and the potential mechanisms behind this phenomenon. RECENT FINDINGS: Osteoclasts have been considered to be highly specialised cells that undergo apoptosis after fulfilling their function of bone resorption. However, recent studies suggest that osteoclasts are longer lived cells which migrate through vasculature and are capable of undergoing fission into a novel cell type (the osteomorph) and re-fusion in a process termed osteoclast recycling. The life cycle of the osteoclast is more complex than previously appreciated. Osteoclast recycling provides a novel mechanistic framework to examine changes in osteoclast biology in response to treatment of bone diseases and provides an exciting new avenue towards personalised medicine.


Assuntos
Reabsorção Óssea , Osteoporose , Humanos , Osteoclastos , Denosumab/farmacologia , Denosumab/uso terapêutico , Ligante RANK , Reabsorção Óssea/tratamento farmacológico , Osteoporose/tratamento farmacológico
14.
Neurosurg Focus ; 53(5): E8, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36321291

RESUMO

OBJECTIVE: For patients with surgically accessible solitary metastases or oligometastatic disease, treatment often involves resection followed by postoperative stereotactic radiosurgery (SRS). This strategy has several potential drawbacks, including irregular target delineation for SRS and potential tumor "seeding" away from the resection cavity during surgery. A neoadjuvant (preoperative) approach to radiation therapy avoids these limitations and offers improved patient convenience. This study assessed the efficacy of neoadjuvant SRS as a new treatment paradigm for patients with brain metastases. METHODS: A retrospective review was performed at a single institution to identify patients who had undergone neoadjuvant SRS (specifically, Gamma Knife radiosurgery) followed by resection of a brain metastasis. Kaplan-Meier survival and log-rank analyses were used to evaluate risks of progression and death. Assessments were made of local recurrence and leptomeningeal spread. Additionally, an analysis of the contemporary literature of postoperative and neoadjuvant SRS for metastatic disease was performed. RESULTS: Twenty-four patients who had undergone neoadjuvant SRS followed by resection of a brain metastasis were identified in the single-institution cohort. The median age was 64 years (range 32-84 years), and the median follow-up time was 16.5 months (range 1 month to 5.7 years). The median radiation dose was 17 Gy prescribed to the 50% isodose. Rates of local disease control were 100% at 6 months, 87.6% at 12 months, and 73.5% at 24 months. In 4 patients who had local treatment failure, salvage therapy included repeat resection, laser interstitial thermal therapy, or repeat SRS. One hundred thirty patients (including the current cohort) were identified in the literature who had been treated with neoadjuvant SRS prior to resection. Overall rates of local control at 1 year after neoadjuvant SRS treatment ranged from 49% to 91%, and rates of leptomeningeal dissemination from 0% to 16%. In comparison, rates of local control 1 year after postoperative SRS ranged from 27% to 91%, with 7% to 28% developing leptomeningeal disease. CONCLUSIONS: Neoadjuvant SRS for the treatment of brain metastases is a novel approach that mitigates the shortcomings of postoperative SRS. While additional prospective studies are needed, the current study of 130 patients including the summary of 106 previously published cases supports the safety and potential efficacy of preoperative SRS with potential for improved outcomes compared with postoperative SRS.


Assuntos
Neoplasias Encefálicas , Neoplasias Meníngeas , Radiocirurgia , Humanos , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Radiocirurgia/efeitos adversos , Terapia Neoadjuvante/efeitos adversos , Neoplasias Encefálicas/cirurgia , Neoplasias Meníngeas/cirurgia , Terapia de Salvação , Estudos Retrospectivos , Resultado do Tratamento
15.
Mov Disord ; 36(3): 662-671, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33211330

RESUMO

BACKGROUND: Deep brain stimulation of the subthalamic nucleus is a widely used adjunctive therapy for motor symptoms of Parkinson's disease, but with variable motor response. Predicting motor response remains difficult, and novel approaches may improve surgical outcomes as well as the understanding of pathophysiological mechanisms. The objective of this study was to determine whether preoperative resting-state functional connectivity MRI predicts motor response from deep brain stimulation of the subthalamic nucleus. METHODS: We collected preoperative resting-state functional MRI from 70 participants undergoing subthalamic nucleus deep brain stimulation. For this cohort, we analyzed the strength of STN functional connectivity with seeds determined by stimulation-induced (ON/OFF) 15 O H2 O PET regional cerebral blood flow differences in a partially overlapping group (n = 42). We correlated STN-seed functional connectivity strength with postoperative motor outcomes and applied linear regression to predict motor outcomes. RESULTS: Preoperative functional connectivity between the left subthalamic nucleus and the ipsilateral internal globus pallidus correlated with postsurgical motor outcomes (r = -0.39, P = 0.0007), with stronger preoperative functional connectivity relating to greater improvement. Left pallidal-subthalamic nucleus connectivity also predicted motor response to DBS after controlling for covariates. DISCUSSION: Preoperative pallidal-subthalamic nucleus resting-state functional connectivity predicts motor benefit from deep brain stimulation, although this should be validated prospectively before clinical application. These observations suggest that integrity of pallidal-subthalamic nucleus circuits may be critical to motor benefits from deep brain stimulation. © 2020 International Parkinson and Movement Disorder Society.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Globo Pálido , Humanos , Imageamento por Ressonância Magnética , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/terapia
16.
Proc Natl Acad Sci U S A ; 115(20): E4594-E4603, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29712847

RESUMO

The high fidelity of DNA replication and repair is attributable, in part, to the allosteric regulation of ribonucleotide reductases (RNRs) that maintains proper deoxynucleotide pool sizes and ratios in vivo. In class Ia RNRs, ATP (stimulatory) and dATP (inhibitory) regulate activity by binding to the ATP-cone domain at the N terminus of the large α subunit and altering the enzyme's quaternary structure. Class Ib RNRs, in contrast, have a partial cone domain and have generally been found to be insensitive to dATP inhibition. An exception is the Bacillus subtilis Ib RNR, which we recently reported to be inhibited by physiological concentrations of dATP. Here, we demonstrate that the α subunit of this RNR contains tightly bound deoxyadenosine 5'-monophosphate (dAMP) in its N-terminal domain and that dATP inhibition of CDP reduction is enhanced by its presence. X-ray crystallography reveals a previously unobserved (noncanonical) α2 dimer with its entire interface composed of the partial N-terminal cone domains, each binding a dAMP molecule. Using small-angle X-ray scattering (SAXS), we show that this noncanonical α2 dimer is the predominant form of the dAMP-bound α in solution and further show that addition of dATP leads to the formation of larger oligomers. Based on this information, we propose a model to describe the mechanism by which the noncanonical α2 inhibits the activity of the B. subtilis Ib RNR in a dATP- and dAMP-dependent manner.


Assuntos
Bacillus subtilis/enzimologia , Nucleotídeos de Desoxiadenina/metabolismo , Ribonucleotídeo Redutases/química , Ribonucleotídeo Redutases/metabolismo , Regulação Alostérica , Bacillus subtilis/genética , Bacillus subtilis/crescimento & desenvolvimento , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Nucleotídeos de Desoxiadenina/química , Ligantes , Ligação Proteica , Conformação Proteica , Ribonucleotídeo Redutases/genética , Espalhamento a Baixo Ângulo , Especificidade por Substrato
17.
PLoS Genet ; 14(1): e1007181, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29377931

RESUMO

Nephron progenitor number determines nephron endowment; a reduced nephron count is linked to the onset of kidney disease. Several transcriptional regulators including Six2, Wt1, Osr1, Sall1, Eya1, Pax2, and Hox11 paralogues are required for specification and/or maintenance of nephron progenitors. However, little is known about the regulatory intersection of these players. Here, we have mapped nephron progenitor-specific transcriptional networks of Six2, Hoxd11, Osr1, and Wt1. We identified 373 multi-factor associated 'regulatory hotspots' around genes closely associated with progenitor programs. To examine their functional significance, we deleted 'hotspot' enhancer elements for Six2 and Wnt4. Removal of the distal enhancer for Six2 leads to a ~40% reduction in Six2 expression. When combined with a Six2 null allele, progeny display a premature depletion of nephron progenitors. Loss of the Wnt4 enhancer led to a significant reduction of Wnt4 expression in renal vesicles and a mildly hypoplastic kidney, a phenotype also enhanced in combination with a Wnt4 null mutation. To explore the regulatory landscape that supports proper target gene expression, we performed CTCF ChIP-seq to identify insulator-boundary regions. One such putative boundary lies between the Six2 and Six3 loci. Evidence for the functional significance of this boundary was obtained by deep sequencing of the radiation-induced Brachyrrhine (Br) mutant allele. We identified an inversion of the Six2/Six3 locus around the CTCF-bound boundary, removing Six2 from its distal enhancer regulation, but placed next to Six3 enhancer elements which support ectopic Six2 expression in the lens where Six3 is normally expressed. Six3 is now predicted to fall under control of the Six2 distal enhancer. Consistent with this view, we observed ectopic Six3 in nephron progenitors. 4C-seq supports the model for Six2 distal enhancer interactions in wild-type and Br/+ mouse kidneys. Together, these data expand our view of the regulatory genome and regulatory landscape underpinning mammalian nephrogenesis.


Assuntos
Diferenciação Celular/genética , Redes Reguladoras de Genes , Néfrons/embriologia , Organogênese/genética , Células-Tronco/fisiologia , Fatores de Transcrição/fisiologia , Animais , Embrião de Mamíferos , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fatores de Transcrição/genética , Fatores de Transcrição/isolamento & purificação , Proteína Wnt4/genética , Proteína Wnt4/fisiologia
18.
N Engl J Med ; 376(16): 1517-1526, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28304227

RESUMO

BACKGROUND: Bococizumab, a humanized monoclonal antibody targeting proprotein convertase subtilisin-kexin type 9 (PCSK9), reduces levels of low-density lipoprotein (LDL) cholesterol. However, the variability and durability of this effect are uncertain. METHODS: We conducted six parallel, multinational lipid-lowering trials enrolling 4300 patients with hyperlipidemia who were randomly assigned to receive 150 mg of bococizumab or placebo subcutaneously every 2 weeks and who were followed for up to 12 months; 96% were receiving statin therapy at the time of enrollment. The patients were assessed for lipid changes over time, stratified according to the presence or absence of antidrug antibodies detected during the treatment period. RESULTS: At 12 weeks, patients who received bococizumab had a reduction of 54.2% in the LDL cholesterol level from baseline, as compared with an increase of 1.0% among those who received placebo (absolute between-group difference, -55.2 percentage points). Significant between-group differences were also observed in total cholesterol, non-high-density lipoprotein cholesterol, apolipoprotein B, and lipoprotein(a) (P<0.001 for all comparisons). However, high-titer antidrug antibodies developed in a substantial proportion of the patients who received bococizumab, which markedly diminished the magnitude and durability of the reduction in LDL cholesterol levels. In addition, among patients with no antidrug antibodies, there was wide variability in the reduction in LDL cholesterol levels at both 12 weeks and 52 weeks. Major cardiovascular events occurred in 57 patients (2.5%) who received bococizumab and in 55 (2.7%) who received placebo (hazard ratio, 0.96; 95% confidence interval, 0.66 to 1.39; P=0.83). The most common adverse event among patients who received bococizumab was injection-site reaction (12.7 per 100 person-years). CONCLUSIONS: In six multinational trials evaluating bococizumab, antidrug antibodies developed in a large proportion of the patients and significantly attenuated the lowering of LDL cholesterol levels. Wide variation in the relative reduction in cholesterol levels was also observed among patients in whom antidrug antibodies did not develop. (Funded by Pfizer; SPIRE ClinicalTrials.gov numbers, NCT01968954 , NCT01968967 , NCT01968980 , NCT02100514 , NCT02135029 , and NCT02458287 .).


Assuntos
Anticorpos Monoclonais Humanizados/imunologia , Anticorpos/sangue , Anticolesterolemiantes/imunologia , LDL-Colesterol/sangue , Hipercolesterolemia/tratamento farmacológico , Inibidores de PCSK9 , Anticorpos Monoclonais Humanizados/efeitos adversos , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticolesterolemiantes/efeitos adversos , Anticolesterolemiantes/uso terapêutico , Feminino , Seguimentos , Humanos , Hipercolesterolemia/imunologia , Injeções Subcutâneas/efeitos adversos , Lipídeos/sangue , Masculino , Pessoa de Meia-Idade , Pró-Proteína Convertase 9/sangue , Pró-Proteína Convertase 9/imunologia , Resultado do Tratamento
19.
Nature ; 512(7514): 319-23, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-25119047

RESUMO

Notch signalling plays a key role in the generation of haematopoietic stem cells (HSCs) during vertebrate development and requires intimate contact between signal-emitting and signal-receiving cells, although little is known regarding when, where and how these intercellular events occur. We previously reported that the somitic Notch ligands, Dlc and Dld, are essential for HSC specification. It has remained unclear, however, how these somitic requirements are connected to the later emergence of HSCs from the dorsal aorta. Here we show in zebrafish that Notch signalling establishes HSC fate as their shared vascular precursors migrate across the ventral face of the somite and that junctional adhesion molecules (JAMs) mediate this required Notch signal transduction. HSC precursors express jam1a (also known as f11r) and migrate axially across the ventral somite, where Jam2a and the Notch ligands Dlc and Dld are expressed. Despite no alteration in the expression of Notch ligand or receptor genes, loss of function of jam1a led to loss of Notch signalling and loss of HSCs. Enforced activation of Notch in shared vascular precursors rescued HSCs in jam1a or jam2a deficient embryos. Together, these results indicate that Jam1a-Jam2a interactions facilitate the transduction of requisite Notch signals from the somite to the precursors of HSCs, and that these events occur well before formation of the dorsal aorta.


Assuntos
Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Molécula A de Adesão Juncional/metabolismo , Molécula B de Adesão Juncional/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Aorta/citologia , Aorta/crescimento & desenvolvimento , Aorta/metabolismo , Diferenciação Celular , Movimento Celular , Molécula A de Adesão Juncional/genética , Molécula B de Adesão Juncional/genética , Fenótipo , Receptores de Superfície Celular/genética , Somitos/citologia , Somitos/embriologia , Somitos/metabolismo , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/genética
20.
Int J Hyperthermia ; 37(2): 35-43, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32672118

RESUMO

The blood-brain and blood-tumor barriers represent highly specialized structures responsible for tight regulation of molecular transit into the central nervous system. Under normal circumstances, the relative impermeability of the blood-brain barrier (BBB) protects the brain from circulating toxins and contributes to a brain microenvironment necessary for optimal neuronal function. However, in the context of tumors and other diseases of central nervous system, the BBB and the more recently appreciated blood-tumor barrier (BTB) represent barriers that prevent effective drug delivery. Overcoming both barriers to optimize treatment of central nervous system diseases remains the subject of intense scientific investigation. Although many newer technologies have been developed to overcome these barriers, thermal therapy, which dates back to the 1890 s, has been known to disrupt the BBB since at least the early 1980s. Recently, as a result of several technological advances, laser interstitial thermal therapy (LITT), a method of delivering targeted thermal therapy, has gained widespread use as a surgical technique to ablate brain tumors. In addition, accumulating evidence indicates that laser ablation may also increase local BBB/BTB permeability after treatment. We herein review the structure and function of the BBB and BTB and the impact of thermal injury, including LITT, on barrier function.


Assuntos
Barreira Hematoencefálica , Neoplasias Encefálicas , Hipertermia Induzida , Transporte Biológico , Neoplasias Encefálicas/irrigação sanguínea , Neoplasias Encefálicas/terapia , Sistemas de Liberação de Medicamentos , Humanos , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA