Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 21(8)2020 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-32290466

RESUMO

Long-term space missions affect the gut microbiome of astronauts, especially the viability of some pathogens. Probiotics may be an effective solution for the management of gut microbiomes, but there is a lack of studies regarding the physiology of probiotics in microgravity. Here, we investigated the effects of microgravity on the probiotic Escherichia coli Nissle 1917 (EcN) by comparing transcriptomic data during exponential and stationary growth phases under simulated microgravity and normal gravity. Microgravity conditions affected several physiological features of EcN, including its growth profile, biofilm formation, stress responses, metal ion transport/utilization, and response to carbon starvation. We found that some changes, such as decreased adhesion ability and acid resistance, may be disadvantageous to EcN relative to gut pathogens under microgravity, indicating the need to develop probiotics optimized for space flight.


Assuntos
Escherichia coli/genética , Perfilação da Expressão Gênica , Probióticos , Transcriptoma , Ausência de Peso , Carbono/metabolismo , Biologia Computacional/métodos , Escherichia coli/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica , Canais Iônicos/metabolismo , Redes e Vias Metabólicas , Metais/metabolismo , Estresse Fisiológico
2.
Food Sci Biotechnol ; 31(13): 1691-1701, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36313001

RESUMO

This study investigated the optimization of pea protein (PP) and citrus fiber (CF) contents with the goal of producing a clean-label plant-based stirred soymilk yogurt that is free of additives. If CF is absent, a greater PP concentration tends to produce soymilk yogurt with improved physical properties (viscosity, flowability and water holding capacity). A CF concentration of 0.1% helped to improve the physical properties necessary in the production of stirred yogurt; however, an increase in CF concentration to 0.2% or higher would instead cause the physical properties to become unfavorable. The lactic acid bacteria (LAB) count was unaffected by CF content and increased proportionally with PP content. Response surface methodology was employed to investigate how the physical properties were affected by the mixing ratio, and an optimization technique was used to obtain the optimal yogurt mixing ratio. According to the optimization process, the optimal contents of 4% PP and 0.1% CF was obtained with a desirability of 87.1%. This result could provide the basic and fundamental information for developing clean-label plant-based stirred soymilk yogurt as a reference in the future.

3.
Foods ; 10(10)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34681352

RESUMO

Effects of plant proteins and dietary fibers on the physical properties of stirred soy yogurt were investigated. Buffering capacity against lactic acid was not affected by the protein concentration for any of the four proteins that were examined: isolate soy protein (ISP), pea protein (PP), rice protein (RP), and almond protein (AP). Three proteins other than AP exhibited an increase in buffering capacity (dB/dPH) following a physical treatment, whereas AP saw a decrease in buffering capacity. Furthermore, physically treated PP revealed a significant increase in viscosity, reaching up to 497 cp in the pH 6.0~6.2 range during the titration process. Following fermentation, PP produced the highest viscosity and coagulum strength with no syneresis. In the case of dietary fiber, Acacia Fiber (AF) was completely dissolved in the solvent and did not affect the physical properties of the fermented coagulum. Soy fiber (SF) was also not suitable for fermented milk processes because precipitation occurred after the physical treatment. In the case of citrus fiber (CF), however, syneresis did not occur during storage after the physical treatment, and the viscosity also increased up to 2873 cP. Consequently, PP and CF were deemed to be a suitable plant protein and dietary fiber for stirred soy yogurt, respectively.

4.
Biotechnol Biofuels ; 12: 113, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31086565

RESUMO

With the increased attention on bio-based industry, demands for techniques that enable fast and effective strain improvement have been dramatically increased. Evolutionary engineering, which is less dependent on biological information, has been applied to strain improvement. Currently, synthetic biology has made great innovations in evolutionary engineering, particularly in the development of synthetic tools for phenotypic perturbation. Furthermore, discovering biological parts with regulatory roles and devising novel genetic circuits have promoted high-throughput screening and selection. In this review, we first briefly explain basics of synthetic biology tools for mutagenesis and screening of improved variants, and then describe how these strategies have been improved and applied to phenotypic engineering. Evolutionary engineering using advanced synthetic biology tools will enable further innovation in phenotypic engineering through the development of novel genetic parts and assembly into well-designed logic circuits that perform complex tasks.

5.
Nat Commun ; 10(1): 2486, 2019 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-31171782

RESUMO

Although brown macroalgae holds potential as an alternative feedstock, its utilization by conventional microbial platforms has been limited due to the inability to metabolize one of the principal sugars, alginate. Here, we isolate Vibrio sp. dhg, a fast-growing bacterium that can efficiently assimilate alginate. Based on systematic characterization of the genomic information of Vibrio sp. dhg, we establish a genetic toolbox for its engineering. We also demonstrate its ability to rapidly produce ethanol, 2,3-butanediol, and lycopene from brown macroalgae sugar mixture with high productivities and yields. Collectively, Vibrio sp. dhg can be used as a platform for the efficient conversion of brown macroalgae sugars into diverse value-added biochemicals.


Assuntos
Phaeophyceae/metabolismo , Alga Marinha/metabolismo , Vibrio/metabolismo , Alginatos/metabolismo , Butileno Glicóis/metabolismo , Etanol/metabolismo , Licopeno/metabolismo , Manitol/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA