Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Biochem Biophys Res Commun ; 527(3): 646-653, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32423806

RESUMO

Neutrophil extracellular trap (NET) is one of the first-line defenses against microbes. Under certain circumstances, however, it also plays an aggravating factor in diverse inflammation-related diseases including cancers and vascular diseases. Our aim is to develop a new method to detect NET in cells and tissues using a DNA-specific fluorescence probe CDr15. CDr15 was characterized to be impermeable to the cell membranes and to emit a strong fluorescence in association with extracellular DNAs in NET. Due to these properties, CDr15 was successfully shown to quantify NETs in vitro and to be applicable for real-time monitoring NET formation in PMA-stimulated neutrophils. Even in formaldehyde-fixed tumor specimens, CDr15 could detect NETs spreading around cancer cells. Compared with DAPI and SYTOX DNA dyes, CDr15 showed a lower level of background fluorescence and a higher specificity in NET detection. Based on these results, we propose CDr15 as a novel marker of NET to be applicable in experimental and clinical studies.


Assuntos
DNA/análise , Armadilhas Extracelulares/química , Corantes Fluorescentes/análise , Neutrófilos/ultraestrutura , Células Cultivadas , Humanos , Microscopia de Fluorescência , Neoplasias/patologia
3.
Immunology ; 146(4): 645-56, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26407164

RESUMO

Zinc is an essential trace element that plays pivotal roles in multiple facets of the immune system. Besides its catalytic and structural roles, zinc also functions as an intracellular signalling molecule, and changes in zinc levels can cause both direct and indirect modulation of immune responses. Further, cytoplasmic levels of bioavailable zinc in immune cells are largely influenced by many extracellular stimuli. Here we provide evidence that zinc represses memory T helper type 17 responses in humans by inhibiting interleukin-1ß (IL-1ß)-mediated signal. In vitro zinc treatment of CD4(+) T cells in the presence of activated monocytes inhibited interferon-γ-producing cells and IL-17-producing cells, but not IL-4-producing cells. Of note, production of IL-17(+) cells from memory CD4(+) T cells, which is significantly up-regulated by lipopolysaccharide-stimulated monocytes, was preferentially repressed by zinc. Increased cytoplasmic zinc in T cells suppressed IL-1ß signalling through repression of phosphorylation of IL-1 receptor-associated kinase 4 (IRAK4), so leading to an inhibitory effect on T helper type 17 responses facilitated by monocyte-derived IL-1ß in humans. These findings suggest that extracellular zinc bioavailability may affect memory CD4(+) T-cell responses by modulating the zinc-mediated signalling pathway.


Assuntos
Memória Imunológica , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Interleucina-1beta/metabolismo , Células Th17/imunologia , Células Th17/metabolismo , Zinco/metabolismo , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Células Cultivadas , Citocinas/metabolismo , Humanos , Memória Imunológica/efeitos dos fármacos , Ativação Linfocitária/imunologia , Modelos Biológicos , Monócitos/imunologia , Monócitos/metabolismo , Fosforilação , Transdução de Sinais/efeitos dos fármacos , Células Th17/efeitos dos fármacos , Zinco/farmacologia
4.
Sci Signal ; 15(716): eabi7400, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35015571

RESUMO

The essential micronutrient zinc regulates immune responses by affecting signaling pathways. In activated monocytes and macrophages, signaling networks mediate the metabolic reprogramming that meets the demands of participation in immune responses. Here, we demonstrated that cytoplasmic, bioavailable zinc was essential for promoting IL-1ß production in activated human monocytes and macrophages downstream of glycolysis induced by the kinase-containing multiprotein complex mTORC1. The concentration of cytoplasmic zinc was determined by that of extracellular zinc, which was brought into cells through the zinc-specific importer Zip8. The abundance of Zip8 was increased in monocytes from patients with rheumatoid arthritis (RA), as well as in LPS-stimulated monocytes and macrophages from healthy individuals. The mTORC1-mediated phosphorylation of S6 kinase (S6K) was enhanced by zinc-mediated inhibition of PP2A, a phosphatase that targets S6K. As a result, IL-1ß production was increased due to the activation of mTORC1-induced glycolysis. In monocytes of patients with RA, the expression of Zip8 and the zinc-inducible metallothionein isoform MT2A and the phosphorylation of S6K were enhanced compared with those of healthy controls. Furthermore, Zip8 expression correlated with more severe RA clinical parameters, suggesting that Zip8-mediated zinc influx is related to inflammatory conditions. These results provide insight into the role of cytoplasmic, bioavailable zinc in the metabolic reprogramming of human monocytes and macrophages in inflammatory responses.


Assuntos
Artrite Reumatoide , Monócitos , Artrite Reumatoide/metabolismo , Glicólise , Humanos , Interleucina-1beta , Macrófagos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Monócitos/metabolismo , Zinco/metabolismo
5.
Mol Cells ; 44(5): 335-341, 2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-33986184

RESUMO

Zinc is an essential micronutrient with crucial roles in multiple facets of biological processes. Dysregulated zinc homeostasis impairs overall immune function and resultantly increases susceptibility to infection. Clinically, zinc supplementation is practiced for treatment of several infectious diseases, such as diarrhea and malaria. Recent focus on zinc as a beneficial element for immune system support has resulted in investigation of the immunomodulatory roles of zinc in a variety of immune cells. Besides its classical role as a cofactor that regulates the structural function of thousands of proteins, accumulating evidence suggests that zinc also acts, in a manner similar to calcium, as an ionic regulator of immune responses via participation as an intracellular messenger in signaling pathways. In this review, we focus on the role of zinc as a signaling molecule in major pathways such as those downstream of Toll-like receptors-, T cell receptor-, and cytokine-mediated signal transduction that regulate the activity and function of monocytes/macrophages and T cells, principal players in the innate and adaptive immune systems.


Assuntos
Transdução de Sinais/imunologia , Zinco/uso terapêutico , Humanos , Zinco/farmacologia
6.
Front Immunol ; 12: 687367, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34394081

RESUMO

The essential microelement zinc plays immunoregulatory roles via its ability to influence signaling pathways. Zinc deficiency impairs overall immune function and resultantly increases susceptibility to infection. Thus, zinc is considered as an immune-boosting supplement for populations with hypozincemia at high-risk for infection. Besides its role as a structural cofactor of many proteins, zinc also acts as an intracellular messenger in immune cell signaling. T-cell activation instructs zinc influx from extracellular and subcellular sources through the Zip6 and Zip8 zinc transporters, respectively. Increased cytoplasmic zinc participates in the regulation of T-cell responses by modifying activation signaling. However, the mechanism underlying the activation-dependent movement of zinc ions by Zip transporters in T cells remains elusive. Here, we demonstrate that Zip6, one of the most abundantly expressed Zip transporters in T cells, is mainly localized to lipid rafts in human T cells and is recruited into the immunological synapse in response to TCR stimulation. This was demonstrated through confocal imaging of the interaction between CD4+ T cells and antigen-presenting cells. Further, immunoprecipitation assays show that TCR triggering induces tyrosine phosphorylation of Zip6, which has at least three putative tyrosine motifs in its long cytoplasmic region, and this phosphorylation is coupled with its physical interaction with Zap70. Silencing Zip6 reduces zinc influx from extracellular sources and suppresses T-cell responses, suggesting an interaction between Zip6-mediated zinc influx and TCR activation. These results provide new insights into the mechanism through which Zip6-mediated zinc influx occurs in a TCR activation-dependent manner in human CD4+ T cells.


Assuntos
Células Apresentadoras de Antígenos/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Sinapses Imunológicas/metabolismo , Microdomínios da Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Proteína-Tirosina Quinase ZAP-70/metabolismo , Células Apresentadoras de Antígenos/imunologia , Linfócitos T CD4-Positivos/imunologia , Proteínas de Transporte de Cátions/genética , Humanos , Sinapses Imunológicas/imunologia , Células Jurkat , Ativação Linfocitária , Microdomínios da Membrana/imunologia , Proteínas de Neoplasias/genética , Fosforilação , Transdução de Sinais , Tirosina
7.
Sci Rep ; 7(1): 3057, 2017 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-28596556

RESUMO

Progressive renal failure causes uremia-related immune dysfunction, which features a chronic inflammatory milieu. Given the central role of end-stage renal disease (ESRD)-related immune dysfunction in the pathogenesis of cardiovascular diseases (CVDs), much attention has been focused on how uremic toxins affect cellular immunity and the mechanisms underlying pathogenesis of atherosclerosis in ESRD patients. Here, we investigated the characteristics of monocytes and CD4+ T cells in ESRD patients and the immune responses induced by indoxyl sulfate (IS), a key uremic toxin, in order to explore the pathogenic effects of these cells on vascular endothelial cells. In ESRD patients, monocytes respond to IS through the aryl hydrocarbon receptor (AhR) and consequently produce increased levels of TNF-α. Upon stimulation with TNF-α, human vascular endothelial cells produce copious amounts of CX3CL1, a chemokine ligand of CX3CR1 that is highly expressed on CD4+CD28-T cells, the predominantly expanded cell type in ESRD patients. A migration assay showed that CD4+CD28- T cells were preferentially recruited by CX3CL1. Moreover, activated CD4+CD28- T cells exhibited cytotoxic capability allowing for the induction of apoptosis in HUVECs. Our findings suggest that in ESRD, IS-mediated immune dysfunction may cause vascular endothelial cell damage and thus, this toxin plays a pivotal role in the pathogenesis of CVD.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Endotélio Vascular/patologia , Indicã/toxicidade , Falência Renal Crônica/imunologia , Adulto , Idoso , Apoptose , Linfócitos T CD4-Positivos/efeitos dos fármacos , Receptor 1 de Quimiocina CX3C/metabolismo , Estudos de Casos e Controles , Células Cultivadas , Quimiocina CXCL1/metabolismo , Endotélio Vascular/efeitos dos fármacos , Feminino , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Indicã/metabolismo , Falência Renal Crônica/patologia , Masculino , Pessoa de Meia-Idade , Receptores de Hidrocarboneto Arílico/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA