Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 464
Filtrar
1.
Annu Rev Immunol ; 39: 369-393, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33561366

RESUMO

Classically, skin was considered a mere structural barrier protecting organisms from a diversity of environmental insults. In recent decades, the cutaneous immune system has become recognized as a complex immunologic barrier involved in both antimicrobial immunity and homeostatic processes like wound healing. To sense a variety of chemical, mechanical, and thermal stimuli, the skin harbors one of the most sophisticated sensory networks in the body. However, recent studies suggest that the cutaneous nervous system is highly integrated with the immune system to encode specific sensations into evolutionarily conserved protective behaviors. In addition to directly sensing pathogens, neurons employ novel neuroimmune mechanisms to provide host immunity. Therefore, given that sensation underlies various physiologies through increasingly complex reflex arcs, a much more dynamic picture is emerging of the skin as a truly systemic organ with highly coordinated physical, immunologic, and neural functions in barrier immunology.


Assuntos
Sistema Imunitário , Neuroimunomodulação , Animais , Humanos , Sistema Nervoso
2.
Cell ; 187(18): 4814-4818, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39241741

RESUMO

In defying conventional views that dismissed itch as trivial, I persisted in studying basophils and ILC2s in human skin and atopic dermatitis. My research on JAK inhibitors for itch ultimately led to FDA-approved drugs. This is my story of disregarding categories and definitions-a story about an unconventional path in science that emphasizes innovation over conformity.


Assuntos
Dermatite Atópica , Modelos Animais de Doenças , Prurido , Humanos , Animais , Camundongos , Dermatite Atópica/patologia , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/imunologia , História do Século XX , História do Século XXI , Basófilos/metabolismo , Inibidores de Janus Quinases/uso terapêutico , Inibidores de Janus Quinases/farmacologia , Pele/patologia , Pele/metabolismo
3.
Cell ; 187(1): 44-61.e17, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38134932

RESUMO

Cytokines employ downstream Janus kinases (JAKs) to promote chronic inflammatory diseases. JAK1-dependent type 2 cytokines drive allergic inflammation, and patients with JAK1 gain-of-function (GoF) variants develop atopic dermatitis (AD) and asthma. To explore tissue-specific functions, we inserted a human JAK1 GoF variant (JAK1GoF) into mice and observed the development of spontaneous AD-like skin disease but unexpected resistance to lung inflammation when JAK1GoF expression was restricted to the stroma. We identified a previously unrecognized role for JAK1 in vagal sensory neurons in suppressing airway inflammation. Additionally, expression of Calcb/CGRPß was dependent on JAK1 in the vagus nerve, and CGRPß suppressed group 2 innate lymphoid cell function and allergic airway inflammation. Our findings reveal evolutionarily conserved but distinct functions of JAK1 in sensory neurons across tissues. This biology raises the possibility that therapeutic JAK inhibitors may be further optimized for tissue-specific efficacy to enhance precision medicine in the future.


Assuntos
Dermatite Atópica , Imunidade Inata , Pulmão , Células Receptoras Sensoriais , Animais , Humanos , Camundongos , Citocinas , Dermatite Atópica/imunologia , Inflamação , Pulmão/imunologia , Linfócitos , Células Receptoras Sensoriais/enzimologia
4.
Cell ; 184(14): 3762-3773.e10, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34133943

RESUMO

Sneezing is a vital respiratory reflex frequently associated with allergic rhinitis and viral respiratory infections. However, its neural circuit remains largely unknown. A sneeze-evoking region was discovered in both cat and human brainstems, corresponding anatomically to the central recipient zone of nasal sensory neurons. Therefore, we hypothesized that a neuronal population postsynaptic to nasal sensory neurons mediates sneezing in this region. By screening major presynaptic neurotransmitters/neuropeptides released by nasal sensory neurons, we found that neuromedin B (NMB) peptide is essential for signaling sneezing. Ablation of NMB-sensitive postsynaptic neurons in the sneeze-evoking region or deficiency in NMB receptor abolished the sneezing reflex. Remarkably, NMB-sensitive neurons further project to the caudal ventral respiratory group (cVRG). Chemical activation of NMB-sensitive neurons elicits action potentials in cVRG neurons and leads to sneezing behavior. Our study delineates a peptidergic pathway mediating sneezing, providing molecular insights into the sneezing reflex arc.


Assuntos
Tronco Encefálico/fisiopatologia , Neuropeptídeos/metabolismo , Nariz/fisiopatologia , Reflexo/fisiologia , Espirro/fisiologia , Animais , Modelos Animais de Doenças , Hipersensibilidade/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Neurocinina B/análogos & derivados , Neurocinina B/metabolismo , Neurônios/metabolismo , RNA Interferente Pequeno/metabolismo , Células Receptoras Sensoriais/fisiologia , Canais de Cátion TRPV/metabolismo , Gravação em Vídeo
5.
Cell ; 184(2): 422-440.e17, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33450207

RESUMO

Itch is an evolutionarily conserved sensation that facilitates expulsion of pathogens and noxious stimuli from the skin. However, in organ failure, cancer, and chronic inflammatory disorders such as atopic dermatitis (AD), itch becomes chronic, intractable, and debilitating. In addition to chronic itch, patients often experience intense acute itch exacerbations. Recent discoveries have unearthed the neuroimmune circuitry of itch, leading to the development of anti-itch treatments. However, mechanisms underlying acute itch exacerbations remain overlooked. Herein, we identify that a large proportion of patients with AD harbor allergen-specific immunoglobulin E (IgE) and exhibit a propensity for acute itch flares. In mice, while allergen-provoked acute itch is mediated by the mast cell-histamine axis in steady state, AD-associated inflammation renders this pathway dispensable. Instead, a previously unrecognized basophil-leukotriene (LT) axis emerges as critical for acute itch flares. By probing fundamental itch mechanisms, our study highlights a basophil-neuronal circuit that may underlie a variety of neuroimmune processes.


Assuntos
Basófilos/patologia , Neurônios/patologia , Prurido/patologia , Doença Aguda , Alérgenos/imunologia , Animais , Doença Crônica , Dermatite Atópica/imunologia , Dermatite Atópica/patologia , Modelos Animais de Doenças , Histamina/metabolismo , Humanos , Imunoglobulina E/imunologia , Inflamação/patologia , Leucotrienos/metabolismo , Mastócitos/imunologia , Camundongos Endogâmicos C57BL , Fenótipo , Prurido/imunologia , Canal de Cátion TRPA1/metabolismo , Canais de Cátion TRPV/metabolismo
6.
Cell ; 178(4): 771-773, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31398333

RESUMO

Sensory neurons have recently emerged as critical mediators of immunity. Cohen et al. (2019) demonstrate that peripheral neurons utilize reflex arcs in order to rapidly condition the immune response in skin adjacent to the site of infection. This nerve reflex arc generates anticipatory immunity for more effective elimination of the pathogen if later exposed.


Assuntos
Reflexo , Células Receptoras Sensoriais , Imunidade Inata , Interneurônios , Pele
7.
Cell ; 170(2): 352-366.e13, 2017 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-28709002

RESUMO

Interactions between stromal fibroblasts and cancer cells generate signals for cancer progression, therapy resistance, and inflammatory responses. Although endogenous RNAs acting as damage-associated molecular patterns (DAMPs) for pattern recognition receptors (PRRs) may represent one such signal, these RNAs must remain unrecognized under non-pathological conditions. We show that triggering of stromal NOTCH-MYC by breast cancer cells results in a POL3-driven increase in RN7SL1, an endogenous RNA normally shielded by RNA binding proteins SRP9/14. This increase in RN7SL1 alters its stoichiometry with SRP9/14 and generates unshielded RN7SL1 in stromal exosomes. After exosome transfer to immune cells, unshielded RN7SL1 drives an inflammatory response. Upon transfer to breast cancer cells, unshielded RN7SL1 activates the PRR RIG-I to enhance tumor growth, metastasis, and therapy resistance. Corroborated by evidence from patient tumors and blood, these results demonstrate that regulation of RNA unshielding couples stromal activation with deployment of RNA DAMPs that promote aggressive features of cancer. VIDEO ABSTRACT.


Assuntos
Neoplasias da Mama/patologia , Exossomos/patologia , RNA não Traduzido/metabolismo , Células Estromais/patologia , Microambiente Tumoral , Neoplasias da Mama/metabolismo , Proteína DEAD-box 58/metabolismo , Exossomos/metabolismo , Humanos , Fatores Reguladores de Interferon/metabolismo , Células MCF-7 , Metástase Neoplásica , RNA Polimerase III/genética , RNA Polimerase III/metabolismo , Receptores Imunológicos , Receptores de Reconhecimento de Padrão/metabolismo , Partícula de Reconhecimento de Sinal/metabolismo , Células Estromais/metabolismo , Viroses/metabolismo
8.
Cell ; 171(1): 217-228.e13, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28890086

RESUMO

Mammals have evolved neurophysiologic reflexes, such as coughing and scratching, to expel invading pathogens and noxious environmental stimuli. It is well established that these responses are also associated with chronic inflammatory diseases, including asthma and atopic dermatitis. However, the mechanisms by which inflammatory pathways promote sensations such as itch remain poorly understood. Here, we show that type 2 cytokines directly activate sensory neurons in both mice and humans. Further, we demonstrate that chronic itch is dependent on neuronal IL-4Rα and JAK1 signaling. We also observe that patients with recalcitrant chronic itch that failed other immunosuppressive therapies markedly improve when treated with JAK inhibitors. Thus, signaling mechanisms previously ascribed to the immune system may represent novel therapeutic targets within the nervous system. Collectively, this study reveals an evolutionarily conserved paradigm in which the sensory nervous system employs classical immune signaling pathways to influence mammalian behavior.


Assuntos
Prurido/imunologia , Células Receptoras Sensoriais/imunologia , Células Receptoras Sensoriais/metabolismo , Transdução de Sinais , Dermatopatias/imunologia , Animais , Gânglios Espinais , Humanos , Interleucina-13/imunologia , Interleucina-4/imunologia , Janus Quinase 1/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Prurido/metabolismo , Dermatopatias/patologia
9.
Immunity ; 55(9): 1645-1662.e7, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-35882236

RESUMO

Healthy skin maintains a diverse microbiome and a potent immune system to fight off infections. Here, we discovered that the epithelial-cell-derived antimicrobial peptides defensins activated orphan G-protein-coupled receptors (GPCRs) Mrgpra2a/b on neutrophils. This signaling axis was required for effective neutrophil-mediated skin immunity and microbiome homeostasis. We generated mutant mouse lines lacking the entire Defensin (Def) gene cluster in keratinocytes or Mrgpra2a/b. Def and Mrgpra2 mutant animals both exhibited skin dysbiosis, with reduced microbial diversity and expansion of Staphylococcus species. Defensins and Mrgpra2 were critical for combating S. aureus infections and the formation of neutrophil abscesses, a hallmark of antibacterial immunity. Activation of Mrgpra2 by defensin triggered neutrophil release of IL-1ß and CXCL2 which are vital for proper amplification and propagation of the antibacterial immune response. This study demonstrated the importance of epithelial-neutrophil signaling via the defensin-Mrgpra2 axis in maintaining healthy skin ecology and promoting antibacterial host defense.


Assuntos
Infecções Bacterianas , Neutrófilos , Receptores Acoplados a Proteínas G , Animais , Camundongos , Antibacterianos , Proteínas de Transporte , Defensinas/genética , Disbiose , Queratinócitos , Receptores Acoplados a Proteínas G/metabolismo , Staphylococcus aureus
10.
Nature ; 625(7993): 166-174, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38057662

RESUMO

Myeloid cells are known to suppress antitumour immunity1. However, the molecular drivers of immunosuppressive myeloid cell states are not well defined. Here we used single-cell RNA sequencing of human and mouse non-small cell lung cancer (NSCLC) lesions, and found that in both species the type 2 cytokine interleukin-4 (IL-4) was predicted to be the primary driver of the tumour-infiltrating monocyte-derived macrophage phenotype. Using a panel of conditional knockout mice, we found that only deletion of the IL-4 receptor IL-4Rα in early myeloid progenitors in bone marrow reduced tumour burden, whereas deletion of IL-4Rα in downstream mature myeloid cells had no effect. Mechanistically, IL-4 derived from bone marrow basophils and eosinophils acted on granulocyte-monocyte progenitors to transcriptionally programme the development of immunosuppressive tumour-promoting myeloid cells. Consequentially, depletion of basophils profoundly reduced tumour burden and normalized myelopoiesis. We subsequently initiated a clinical trial of the IL-4Rα blocking antibody dupilumab2-5 given in conjunction with PD-1/PD-L1 checkpoint blockade in patients with relapsed or refractory NSCLC who had progressed on PD-1/PD-L1 blockade alone (ClinicalTrials.gov identifier NCT05013450 ). Dupilumab supplementation reduced circulating monocytes, expanded tumour-infiltrating CD8 T cells, and in one out of six patients, drove a near-complete clinical response two months after treatment. Our study defines a central role for IL-4 in controlling immunosuppressive myelopoiesis in cancer, identifies a novel combination therapy for immune checkpoint blockade in humans, and highlights cancer as a systemic malady that requires therapeutic strategies beyond the primary disease site.


Assuntos
Medula Óssea , Carcinogênese , Interleucina-4 , Mielopoese , Transdução de Sinais , Animais , Humanos , Camundongos , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/metabolismo , Medula Óssea/efeitos dos fármacos , Medula Óssea/metabolismo , Carcinogênese/efeitos dos fármacos , Carcinogênese/metabolismo , Carcinogênese/patologia , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Inibidores de Checkpoint Imunológico/imunologia , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Interleucina-4/metabolismo , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/terapia , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Monócitos/efeitos dos fármacos , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo , Recidiva , Transdução de Sinais/efeitos dos fármacos
11.
Immunity ; 52(5): 753-766, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32433948

RESUMO

Although the medical definition of itch has been in existence for 360 years, only in the last 20 years have we begun to understand the basic mechanisms that underlie this unique sensation. Therapeutics that specifically target chronic itch as a pathologic entity are currently still not available. Recent seminal advances in itch circuitry within the nervous system have intersected with discoveries in immunology in unexpected ways to rapidly inform emerging treatment strategies. The current review aims to introduce these basic concepts in itch biology and highlight how distinct immunologic pathways integrate with recently identified itch-sensory circuits in the nervous system to inform a major new paradigm of neuroimmunology and therapeutic development for chronic itch.


Assuntos
Gânglios Espinais/imunologia , Prurido/imunologia , Células Receptoras Sensoriais/imunologia , Pele/imunologia , Córtex Somatossensorial/imunologia , Animais , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Humanos , Modelos Imunológicos , Modelos Neurológicos , Prurido/diagnóstico , Prurido/fisiopatologia , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/fisiologia , Transdução de Sinais/imunologia , Transdução de Sinais/fisiologia , Pele/inervação , Córtex Somatossensorial/fisiopatologia
12.
Immunity ; 53(2): 235-237, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32814020

RESUMO

In this issue of Immunity, Xu et al. reveal that dermal dendritic cells produce interleukin-31, which acts on neurons to promote wound itch. Their findings link itch associated with deeper wounds-wounds that extend beyond the epithelium-to the cells and cytokines that mediate wound healing.


Assuntos
Citocinas , Fator de Crescimento Transformador beta , Humanos , Interleucinas , Células de Langerhans , Prurido , Células Receptoras Sensoriais
13.
Nature ; 613(7943): 345-354, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36599983

RESUMO

Understanding how a subset of expressed genes dictates cellular phenotype is a considerable challenge owing to the large numbers of molecules involved, their combinatorics and the plethora of cellular behaviours that they determine1,2. Here we reduced this complexity by focusing on cellular organization-a key readout and driver of cell behaviour3,4-at the level of major cellular structures that represent distinct organelles and functional machines, and generated the WTC-11 hiPSC Single-Cell Image Dataset v1, which contains more than 200,000 live cells in 3D, spanning 25 key cellular structures. The scale and quality of this dataset permitted the creation of a generalizable analysis framework to convert raw image data of cells and their structures into dimensionally reduced, quantitative measurements that can be interpreted by humans, and to facilitate data exploration. This framework embraces the vast cell-to-cell variability that is observed within a normal population, facilitates the integration of cell-by-cell structural data and allows quantitative analyses of distinct, separable aspects of organization within and across different cell populations. We found that the integrated intracellular organization of interphase cells was robust to the wide range of variation in cell shape in the population; that the average locations of some structures became polarized in cells at the edges of colonies while maintaining the 'wiring' of their interactions with other structures; and that, by contrast, changes in the location of structures during early mitotic reorganization were accompanied by changes in their wiring.


Assuntos
Células-Tronco Pluripotentes Induzidas , Espaço Intracelular , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Análise de Célula Única , Conjuntos de Dados como Assunto , Interfase , Forma Celular , Mitose , Polaridade Celular , Sobrevivência Celular
14.
Immunity ; 50(5): 1163-1171.e5, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31027996

RESUMO

Classical itch studies have focused on immunoglobulin E (IgE)-mediated mast cell activation and histamine release. Recently, members of the Mas-related G-protein-coupled receptor (Mrgpr) family have been identified as mast cell receptors, but their role in itch is unclear. Here, we report that mast cell activation via Mrgprb2 evoked non-histaminergic itch in mice independently of the IgE-Fc epsilon RI (FcεRI)-histamine axis. Compared with IgE-FcεRI stimulation, Mrgprb2 activation of mast cells was distinct in both released substances (histamine, serotonin, and tryptase) and the pattern of activated itch-sensory neurons. Mrgprb2 deficiency decreased itch in multiple preclinical models of allergic contact dermatitis (ACD), a pruritic inflammatory skin disorder, and both mast cell number and PAMP1-20 concentrations (agonist of the human Mrgprb2 homolog, MRGPRX2) were increased in human ACD skin. These findings suggest that this pathway may represent a therapeutic target for treating ACD and mast-cell-associated itch disorders in which antihistamines are ineffective.


Assuntos
Mastócitos/imunologia , Proteínas do Tecido Nervoso/metabolismo , Prurido/patologia , Receptores Acoplados a Proteínas G/metabolismo , Receptores de IgE/metabolismo , Receptores de Neuropeptídeos/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Feminino , Histamina/metabolismo , Antagonistas dos Receptores Histamínicos/uso terapêutico , Humanos , Imunoglobulina E/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Fragmentos de Peptídeos/metabolismo , Receptores Acoplados a Proteínas G/genética , Serotonina/metabolismo , Pele/metabolismo , Triptases/metabolismo , Adulto Jovem
15.
Immunity ; 49(1): 107-119.e4, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29958798

RESUMO

Intestinal macrophages are critical for gastrointestinal (GI) homeostasis, but our understanding of their role in regulating intestinal motility is incomplete. Here, we report that CX3C chemokine receptor 1-expressing muscularis macrophages (MMs) were required to maintain normal GI motility. MMs expressed the transient receptor potential vanilloid 4 (TRPV4) channel, which senses thermal, mechanical, and chemical cues. Selective pharmacologic inhibition of TRPV4 or conditional deletion of TRPV4 from macrophages decreased intestinal motility and was sufficient to reverse the GI hypermotility that is associated with chemotherapy treatment. Mechanistically, stimulation of MMs via TRPV4 promoted the release of prostaglandin E2 and elicited colon contraction in a paracrine manner via prostaglandin E receptor signaling in intestinal smooth muscle cells without input from the enteric nervous system. Collectively, our data identify TRPV4-expressing MMs as an essential component required for maintaining normal GI motility and provide potential drug targets for GI motility disorders.


Assuntos
Colo/fisiologia , Motilidade Gastrointestinal , Macrófagos/metabolismo , Miócitos de Músculo Liso/metabolismo , Transdução de Sinais , Canais de Cátion TRPV/metabolismo , Animais , Receptor 1 de Quimiocina CX3C/metabolismo , Colo/fisiopatologia , Ciclo-Oxigenase 1/deficiência , Ciclo-Oxigenase 1/metabolismo , Dinoprostona/análise , Dinoprostona/metabolismo , Feminino , Mucosa Gástrica/citologia , Expressão Gênica , Masculino , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/deficiência , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Contração Muscular , Receptores de Prostaglandina E/antagonistas & inibidores , Receptores de Prostaglandina E/metabolismo , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/deficiência , Canais de Cátion TRPV/genética
16.
Immunity ; 48(5): 923-936.e4, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29752065

RESUMO

The development of T cell tolerance in the thymus requires the presentation of host proteins by multiple antigen-presenting cell (APC) types. However, the importance of transferring host antigens from transcription factor AIRE-dependent medullary thymic epithelial cells (mTECs) to bone marrow (BM) APCs is unknown. We report that antigen was primarily transferred from mTECs to CD8α+ dendritic cells (DCs) and showed that CD36, a scavenger receptor selectively expressed on CD8α+ DCs, mediated the transfer of cell-surface, but not cytoplasmic, antigens. The absence of CD8α+ DCs or CD36 altered thymic T cell selection, as evidenced by TCR repertoire analysis and the loss of allo-tolerance in murine allogeneic BM transplantation (allo-BMT) studies. Decreases in these DCs and CD36 expression in peripheral blood of human allo-BMT patients correlated with graft-versus-host disease. Our findings suggest that CD36 facilitates transfer of mTEC-derived cell-surface antigen on CD8α+ DCs to promote tolerance to host antigens during homeostasis and allo-BMT.


Assuntos
Antígenos de Superfície/imunologia , Antígenos CD36/imunologia , Tolerância Imunológica/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia , Timo/imunologia , Animais , Antígenos de Superfície/metabolismo , Transplante de Medula Óssea , Antígenos CD36/genética , Antígenos CD36/metabolismo , Antígenos CD8/imunologia , Antígenos CD8/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Knockout , Camundongos Transgênicos , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T Reguladores/metabolismo , Timo/metabolismo , Transplante Homólogo
17.
N Engl J Med ; 388(6): 511-517, 2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36780675

RESUMO

BACKGROUND: Notalgia paresthetica is a neuropathic disorder characterized by pruritus in a circumscribed region of the upper back. Difelikefalin, a selective kappa opioid receptor agonist, has shown efficacy in other chronic pruritic conditions and is being investigated for the treatment of notalgia paresthetica. METHODS: In this phase 2, double-blind, placebo-controlled trial, we randomly assigned, in a 1:1 ratio, patients with moderate-to-severe pruritus caused by notalgia paresthetica to receive 2 mg of oral difelikefalin or placebo twice daily for 8 weeks. The primary outcome was the change from baseline at week 8 in the weekly mean score on the daily Worst Itch Numeric Rating Scale (WI-NRS; scores range from 0 [no itch] to 10 [worst itch imaginable]). The secondary clinical outcomes were itch-related quality-of-life and itch-related sleep measures. RESULTS: A total of 126 patients were enrolled; 62 patients were assigned to receive difelikefalin, and 63 were assigned to receive placebo. One patient who had been assigned to receive difelikefalin withdrew consent before the first dose and is not included in the main analyses. The mean baseline WI-NRS score was 7.6 (indicating severe itch) in each group. The change from baseline in the weekly mean WI-NRS score at week 8 was -4.0 points in the difelikefalin group and -2.4 points in the placebo group (difference in change, -1.6 points; 95% confidence interval, -2.6 to -0.6; P = 0.001). The results for the secondary outcomes generally did not support those of the primary analysis. Headache, dizziness, constipation, and increased urine output occurred more frequently in the difelikefalin group than in the placebo group. CONCLUSIONS: Among patients with notalgia paresthetica, oral treatment with difelikefalin resulted in modestly greater reductions in itch intensity scores than placebo over a period of 8 weeks but was associated with adverse events. Larger and longer trials are needed to assess the efficacy and safety of difelikefalin treatment in this disorder. (Funded by Cara Therapeutics; KOMFORT ClinicalTrials.gov number, NCT04706975.).


Assuntos
Doenças do Sistema Nervoso Periférico , Piperidinas , Prurido , Receptores Opioides kappa , Humanos , Método Duplo-Cego , Piperidinas/efeitos adversos , Piperidinas/uso terapêutico , Prurido/tratamento farmacológico , Prurido/etiologia , Resultado do Tratamento , Receptores Opioides kappa/agonistas , Doenças do Sistema Nervoso Periférico/complicações , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Dorso/inervação
18.
Nat Immunol ; 14(6): 564-73, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23603794

RESUMO

Type 2 immunity is critical for defense against cutaneous infections but also underlies the development of allergic skin diseases. We report the identification in normal mouse dermis of an abundant, phenotypically unique group 2 innate lymphoid cell (ILC2) subset that depended on interleukin 7 (IL-7) and constitutively produced IL-13. Intravital multiphoton microscopy showed that dermal ILC2 cells specifically interacted with mast cells, whose function was suppressed by IL-13. Treatment of mice deficient in recombination-activating gene 1 (Rag1(-/-)) with IL-2 resulted in the population expansion of activated, IL-5-producing dermal ILC2 cells, which led to spontaneous dermatitis characterized by eosinophil infiltrates and activated mast cells. Our data show that ILC2 cells have both pro- and anti-inflammatory properties and identify a previously unknown interactive pathway between two innate populations of cells of the immune system linked to type 2 immunity and allergic diseases.


Assuntos
Dermatite/imunologia , Imunidade Inata/imunologia , Linfócitos/imunologia , Pele/imunologia , Animais , Comunicação Celular/imunologia , Células Cultivadas , Dermatite/genética , Dermatite/metabolismo , Derme/citologia , Derme/imunologia , Derme/metabolismo , Eosinófilos/imunologia , Eosinófilos/metabolismo , Citometria de Fluxo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/imunologia , Proteínas de Homeodomínio/metabolismo , Imunidade Inata/genética , Interleucina-13/imunologia , Interleucina-13/metabolismo , Interleucina-17/imunologia , Interleucina-17/metabolismo , Interleucina-2/imunologia , Interleucina-2/farmacologia , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Mastócitos/imunologia , Mastócitos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microscopia de Fluorescência por Excitação Multifotônica , Pele/metabolismo , Gravação de Videoteipe
19.
Immunity ; 45(1): 6-8, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27438760

RESUMO

The skin barrier is essential for host defense, but how the skin provides protection when the barrier is breached is not well understood. In this issue of Immunity, Gallo and colleagues report that keratinocytes integrate signals from antimicrobial peptides via MAVS signaling to amplify their antiviral immune response.


Assuntos
Anti-Infecciosos , Pele/imunologia , Peptídeos Catiônicos Antimicrobianos/imunologia , Humanos , Imunidade , Imunidade Inata , Queratinócitos/imunologia , Transdução de Sinais
20.
J Allergy Clin Immunol ; 153(4): 879-893, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37634890

RESUMO

Type 2 inflammation is characterized by overexpression and heightened activity of type 2 cytokines, mediators, and cells that drive neuroimmune activation and sensitization to previously subthreshold stimuli. The consequences of altered neuroimmune activity differ by tissue type and disease; they include skin inflammation, sensitization to pruritogens, and itch amplification in atopic dermatitis and prurigo nodularis; airway inflammation and/or hyperresponsiveness, loss of expiratory volume, airflow obstruction and increased mucus production in asthma; loss of sense of smell in chronic rhinosinusitis with nasal polyps; and dysphagia in eosinophilic esophagitis. We describe the neuroimmune interactions that underlie the various sensory and autonomic pathologies in type 2 inflammatory diseases and present recent advances in targeted treatment approaches to reduce type 2 inflammation and its associated symptoms in these diseases. Further research is needed to better understand the neuroimmune mechanisms that underlie chronic, sustained inflammation and its related sensory pathologies in diseases associated with type 2 inflammation.


Assuntos
Asma , Dermatite Atópica , Sinusite , Humanos , Inflamação , Prurido/tratamento farmacológico , Sinusite/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA