RESUMO
Recently, the need to develop a robust three-dimensional (3D) cell culture system that serves as a valuable in vitro tumor model has been emphasized. This system should closely mimic the tumor growth behaviors observed in vivo and replicate the key elements and characteristics of human tumors for the effective discovery and development of anti-tumor therapeutics. Therefore, in this study, we developed an effective 3D in vitro model of human prostate cancer (PC) using a marine collagen-based biomimetic 3D scaffold. The model displayed distinctive molecular profiles and cellular properties compared with those of the 2D PC cell culture. This was evidenced by (1) increased cell proliferation, migration, invasion, colony formation, and chemoresistance; (2) upregulated expression of crucial multidrug-resistance- and cancer-stemness-related genes; (3) heightened expression of key molecules associated with malignant progressions, such as epithelial-mesenchymal transition transcription factors, Notch, matrix metalloproteinases, and pluripotency biomarkers; (4) robust enrichment of prostate cancer stem cells (CSCs); and (5) enhanced expression of integrins. These results suggest that our 3D in vitro PC model has the potential to serve as a research platform for studying PC and prostate CSC biology, as well as for screening novel therapies targeting PC and prostate CSCs.
Assuntos
Antineoplásicos , Proliferação de Células , Colágeno , Células-Tronco Neoplásicas , Neoplasias da Próstata , Humanos , Masculino , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Células-Tronco Neoplásicas/efeitos dos fármacos , Técnicas de Cultura de Células em Três Dimensões/métodos , Animais , Movimento Celular/efeitos dos fármacos , Alicerces Teciduais , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Organismos Aquáticos , Descoberta de Drogas/métodosRESUMO
The association between leukemic stem cells (LSCs) and leukemia development has been widely established in the context of genetic alterations, epigenetic pathways, and signaling pathway regulation. Hematopoietic stem cells are at the top of the bone marrow hierarchy and can self-renew and progressively generate blood and immune cells. The microenvironment, niche cells, and complex signaling pathways that regulate them acquire genetic mutations and epigenetic alterations due to aging, a chronic inflammatory environment, stress, and cancer, resulting in hematopoietic stem cell dysregulation and the production of abnormal blood and immune cells, leading to hematological malignancies and blood cancer. Cells that acquire these mutations grow at a faster rate than other cells and induce clone expansion. Excessive growth leads to the development of blood cancers. Standard therapy targets blast cells, which proliferate rapidly; however, LSCs that can induce disease recurrence remain after treatment, leading to recurrence and poor prognosis. To overcome these limitations, researchers have focused on the characteristics and signaling systems of LSCs and therapies that target them to block LSCs. This review aims to provide a comprehensive understanding of the types of hematopoietic malignancies, the characteristics of leukemic stem cells that cause them, the mechanisms by which these cells acquire chemotherapy resistance, and the therapies targeting these mechanisms.
Assuntos
Neoplasias Hematológicas , Células-Tronco Neoplásicas , Humanos , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/patologia , Neoplasias Hematológicas/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Células-Tronco Hematopoéticas/metabolismo , Leucemia/patologia , Leucemia/genética , Leucemia/metabolismo , Transdução de Sinais , Animais , Microambiente Tumoral/genética , Resistencia a Medicamentos Antineoplásicos/genética , Epigênese Genética , MutaçãoRESUMO
Extensive research has explored the functional correlation between stem cells and progenitor cells, particularly in blood. Hematopoietic stem cells (HSCs) can self-renew and regenerate tissues within the bone marrow, while stromal cells regulate tissue function. Recent studies have validated the role of mammalian stem cells within specific environments, providing initial empirical proof of this functional phenomenon. The interaction between bone and blood has always been vital to the function of the human body. It was initially proposed that during evolution, mammalian stem cells formed a complex relationship with the surrounding microenvironment, known as the niche. Researchers are currently debating the significance of molecular-level data to identify individual stromal cell types due to incomplete stromal cell mapping. Obtaining these data can help determine the specific activities of HSCs in bone marrow. This review summarizes key topics from previous studies on HSCs and their environment, discussing current and developing concepts related to HSCs and their niche in the bone marrow.
Assuntos
Medula Óssea , Células-Tronco Hematopoéticas , Nicho de Células-Tronco , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Nicho de Células-Tronco/fisiologia , Animais , Medula Óssea/metabolismo , Medula Óssea/fisiologia , Células da Medula Óssea/metabolismo , Células da Medula Óssea/citologiaRESUMO
Atherosclerosis is characterized by the deposition and accumulation of extracellular cholesterol and inflammatory cells in the arterial blood vessel walls, and 27-hydroxycholesterol (27OHChol) is the most abundant cholesterol metabolite. 27OHChol is an oxysterol that induces immune responses, including immune cell activation and chemokine secretion, although the underlying mechanisms are not fully understood. In this study, we investigated the roles of the mechanistic target of rapamycin (mTOR) in 27HChol-induced inflammation using rapamycin. Treating monocytic cells with rapamycin effectively reduced the expression of CCL2 and CD14, which was involved with the increased immune response by 27OHChol. Rapamycin also suppressed the phosphorylation of S6 and 4EBP1, which are downstream of mTORC1. Additionally, it also alleviates the increase in differentiation markers into macrophage. These results suggest that 27OHChol induces inflammation by activating the mTORC1 signaling pathway, and rapamycin may be useful for the treatment of atherosclerosis-related inflammation involving 27OHchol.
Assuntos
Inflamação , Alvo Mecanístico do Complexo 1 de Rapamicina , Transdução de Sinais , Sirolimo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Humanos , Sirolimo/farmacologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Transdução de Sinais/efeitos dos fármacos , Hidroxicolesteróis/farmacologia , Quimiocina CCL2/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Aterosclerose/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/patologia , Fosforilação/efeitos dos fármacos , Receptores de Lipopolissacarídeos/metabolismo , Células THP-1 , Monócitos/efeitos dos fármacos , Monócitos/metabolismoRESUMO
Hematopoietic stem cells (HSCs) reside in specific microenvironments that facilitate their regulation through both internal mechanisms and external cues. Bone marrow endothelial cells (BMECs), which are found in one of these microenvironments, play a vital role in controlling the self-renewal and differentiation of HSCs during hematological stress. We previously showed that 27-hydroxycholesterol (27HC) administration of exogenous 27HC negatively affected the population of HSCs and progenitor cells by increasing the reactive oxygen species levels in the bone marrow. However, the effect of 27HC on BMECs is unclear. To determine the function of 27HC in BMECs, we employed magnetic-activated cell sorting to isolate CD31+ BMECs and CD31- cells. We demonstrated the effect of 27HC on CD31+ BMECs and HSCs. Treatment with exogenous 27HC led to a decrease in the number of BMECs and reduced the expression of adhesion molecules that are crucial for maintaining HSCs. Our results demonstrate that BMECs are sensitively affected by 27HC and are crucial for HSC survival.
Assuntos
Células da Medula Óssea , Células Endoteliais , Células-Tronco Hematopoéticas , Hidroxicolesteróis , Hidroxicolesteróis/farmacologia , Hidroxicolesteróis/metabolismo , Animais , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/citologia , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/citologia , Camundongos , Camundongos Endogâmicos C57BL , Diferenciação Celular/efeitos dos fármacos , Medula Óssea/metabolismo , Medula Óssea/efeitos dos fármacos , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Células Cultivadas , Espécies Reativas de Oxigênio/metabolismoRESUMO
Prolonged thymic involution results in decreased thymopoiesis and thymic output, leading to peripheral T-cell deficiency. Since the thymic-dependent pathway is the only means of generating fully mature T cells, the identification of strategies to enhance thymic regeneration is crucial in developing therapeutic interventions to revert immune suppression in immunocompromised patients. The present study clearly shows that fish collagen peptides (FCPs) stimulate activities of thymic epithelial cells (TECs), including cell proliferation, thymocyte adhesion, and the gene expression of thymopoietic factors such as FGF-7, IGF-1, BMP-4, VEGF-A, IL-7, IL-21, RANKL, LTß, IL-22R, RANK, LTßR, SDF-1, CCL21, CCL25, CXCL5, Dll1, Dll4, Wnt4, CD40, CD80, CD86, ICAM-1, VCAM-1, FoxN1, leptin, cathepsin L, CK5, and CK8 through the NF-κB signal transduction pathway. Furthermore, our study also revealed the cytoprotective effects of FCPs on TECs against cyclophosphamide-induced cellular injury through the NF-κB signaling pathway. Importantly, FCPs exhibited a significant capability to facilitate thymic regeneration in mice after cyclophosphamide-induced damage via the NF-κB pathway. Taken together, this study sheds light on the role of FCPs in TEC function, thymopoiesis, and thymic regeneration, providing greater insight into the development of novel therapeutic strategies for effective thymus repopulation for numerous clinical conditions in which immune reconstitution is required.
Assuntos
NF-kappa B , Timócitos , Humanos , Camundongos , Animais , NF-kappa B/metabolismo , Citoproteção , Timo , Células Epiteliais , Colágeno/metabolismo , Expressão Gênica , Proliferação de Células , Ciclofosfamida/efeitos adversosRESUMO
Biomaterials-based biofabrication methods have gained much attention in recent years. Among them, 3D cell printing is a pioneering technology to facilitate the recapitulation of unique features of complex human tissues and organs with high process flexibility and versatility. Bioinks, combinations of printable hydrogel and cells, can be utilized to create 3D cell-printed constructs. The bioactive cues of bioinks directly trigger cells to induce tissue morphogenesis. Among the various printable hydrogels, the tissue- and organ-specific decellularized extracellular matrix (dECM) can exert synergistic effects in supporting various cells at any component by facilitating specific physiological properties. In this review, we aim to discuss a new paradigm of dECM-based bioinks able to recapitulate the inherent microenvironmental niche in 3D cell-printed constructs. This review can serve as a toolbox for biomedical engineers who want to understand the beneficial characteristics of the dECM-based bioinks and a basic set of fundamental criteria for printing functional human tissues and organs.
Assuntos
Materiais Biocompatíveis/química , Bioimpressão , Matriz Extracelular/química , Tinta , Impressão Tridimensional , Engenharia Tecidual , Microambiente Celular , HumanosRESUMO
Acute ischemic stroke is the leading cause of morbidity and mortality worldwide. Recombinant tissue plasminogen activator (rtPA) is the only agent clinically approved by FDA for patients with acute ischemic stroke. However, delayed treatment of rtPA (e.g., more than 3 h after stroke onset) exacerbates ischemic brain damage by causing intracerebral hemorrhage and increasing neurotoxicity. In the present study, we investigated whether the neuroprotant otaplimastat reduced delayed rtPA treatment-evoked neurotoxicity in male Sprague Dawley rats subjected to embolic middle cerebral artery occlusion (eMCAO). Otaplimastat reduced cerebral infarct size and edema and improved neurobehavioral deficits. In particular, otaplimastat markedly reduced intracerebral hemorrhagic transformation and mortality triggered by delayed rtPA treatment, consequently extending the therapeutic time window of rtPA. We further found that ischemia-evoked extracellular matrix metalloproteases (MMPs) expression was closely correlated with cerebral hemorrhagic transformation and brain damage. In ischemic conditions, delayed rtPA treatment further increased brain injury via synergistic expression of MMPs in vascular endothelial cells. In oxygen-glucose-deprived endothelial cells, otaplimastat suppressed the activity rather than protein expression of MMPs by restoring the level of tissue inhibitor of metalloproteinase (TIMP) suppressed in ischemia, and consequently reduced vascular permeation. This paper shows that otaplimastat under clinical trials is a new drug which can inhibit stroke on its own and extend the therapeutic time window of rtPA, especially when administered in combination with rtPA.
Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Acetamidas , Animais , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Hemorragia Cerebral/tratamento farmacológico , Hemorragia Cerebral/metabolismo , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Fibrinolíticos/uso terapêutico , Humanos , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Masculino , Metaloproteinases da Matriz/metabolismo , Quinazolinas/uso terapêutico , Quinazolinonas , Ratos , Ratos Sprague-Dawley , Acidente Vascular Cerebral/metabolismo , Terapia Trombolítica , Ativador de Plasminogênio TecidualRESUMO
Alginate is a natural polysaccharide that typically originates from various species of algae. Due to its low cost, good biocompatibility, and rapid ionic gelation, the alginate hydrogel has become a good option of bioink source for 3D bioprinting. However, the lack of cell adhesive moieties, erratic biodegradability, and poor printability are the critical limitations of alginate hydrogel bioink. This review discusses the pivotal properties of alginate hydrogel as a bioink for 3D bioprinting technologies. Afterward, a variety of advanced material formulations and biofabrication strategies that have recently been developed to overcome the drawbacks of alginate hydrogel bioink will be focused on. In addition, the applications of these advanced solutions for 3D bioprinting of tissue/organ mimicries such as regenerative implants and in vitro tissue models using alginate-based bioink will be systematically summarized.
Assuntos
Alginatos/química , Hidrogéis/química , Alicerces Teciduais/química , Animais , Bioimpressão , Impressão Tridimensional , Engenharia TecidualRESUMO
The development of artificial tissue/organs with the functional maturity of their native equivalents is one of the long-awaited panaceas for the medical and pharmaceutical industries. Advanced 3D cell-printing technology and various functional bioinks are promising technologies in the field of tissue engineering that have enabled the fabrication of complex 3D living tissue/organs. Various requirements for these tissues, including a complex and large-volume structure, tissue-specific microenvironments, and functional vasculatures, have been addressed to develop engineered tissue/organs with native relevance. Functional tissue/organ constructs have been developed that satisfy such criteria and may facilitate both in vivo replenishment of damaged tissue and the development of reliable in vitro testing platforms for drug development. This review describes key developments in technologies and materials for engineering 3D cell-printed constructs for therapeutic and drug testing applications.
Assuntos
Materiais Biomiméticos/uso terapêutico , Biomimética/métodos , Descoberta de Drogas/métodos , Impressão Tridimensional , Medicina Regenerativa/métodos , Engenharia Tecidual/métodos , Animais , Avaliação Pré-Clínica de Medicamentos/métodos , HumanosRESUMO
Various antioxidants are being used to neutralize the harmful effects of reactive oxygen species (ROS) overproduced in diseased tissues and contaminated environments. Polymer-directed crystallization of antioxidants has attracted attention as a way to control drug efficacy through molecular dissolution. However, most recrystallized antioxidants undertake continuous dissolution independent of the ROS level, thus causing side-effects. This study demonstrates a unique method to assemble antioxidant crystals that modulate their dissolution rate in response to the ROS level. We hypothesized that antioxidants recrystallized using a ROS-labile polymer would be triggered to dissolve when the ROS level increases. We examined this hypothesis by using catechin as a model antioxidant. Catechin was recrystallized using polyethylenimine cross-linked with ROS-labile diselanediylbis-(ethane-2,1-diyl)-diacrylate. Catechin crystallized with the ROS-labile polymer displays accelerated dissolution proportional to the H2 O2 concentration. The ROS-responsive catechin crystals protect vascular cells from oxidative insults by activating intracellular glutathione peroxidase expression and, in turn, inhibiting an increase in the intracellular oxidative stress. In addition, ROS-responsive catechin crystals alleviate changes in the heart rate of Daphnia magna in oxidative media. We propose that the results of this study would be broadly useful for improving the therapeutic efficacy of a broad array of drug compounds.
Assuntos
Catequina/química , Catequina/farmacologia , Animais , Antioxidantes/química , Antioxidantes/farmacologia , Daphnia , Frequência Cardíaca/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismoRESUMO
Mycobacterium abscessus is a rapid-growing, multidrug-resistant, non-tuberculous mycobacterial species responsible for a variety of human infections, such as cutaneous and pulmonary infections. M. abscessus infections are very difficult to eradicate due to the natural and acquired multidrug resistance profiles of M. abscessus. Thus, there is an urgent need for the development of effective drugs or regimens against M. abscessus infections. Here, we report the activity of a US Food and Drug Administration approved drug, thiostrepton, against M. abscessus. We found that thiostrepton significantly inhibited the growth of M. abscessus wild-type strains, subspecies, clinical isolates, and drug-resistant mutants in vitro and in macrophages. In addition, treatment of macrophages with thiostrepton significantly decreased proinflammatory cytokine production in a dose-dependent manner, suggesting an inhibitory effect of thiostrepton on inflammation induced during M. abscessus infection. We further showed that thiostrepton exhibits antimicrobial effects in vivo using a zebrafish model of M. abscessus infection.
Assuntos
Antibacterianos/farmacologia , Infecções por Mycobacterium não Tuberculosas/microbiologia , Mycobacterium abscessus/efeitos dos fármacos , Tioestreptona/farmacologia , Animais , Antibacterianos/química , Antibacterianos/uso terapêutico , Linhagem Celular , Citocinas/biossíntese , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Humanos , Mediadores da Inflamação/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Testes de Sensibilidade Microbiana , Estrutura Molecular , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Infecções por Mycobacterium não Tuberculosas/metabolismo , Mycobacterium abscessus/classificação , Mycobacterium abscessus/genética , Tioestreptona/uso terapêutico , Peixe-ZebraRESUMO
This study aimed to investigate in vitro the anti-influenza B/Lee/40 virus effect of sakuranetin and mode of its action. The sakuranetin exhibited potent antiviral activity against influenza B/Lee/40 virus, reducing the formation of a visible cytopathic effect, with a 50% inhibitory concentration (IC50 ) of 7.21 µg/ml and no cytotoxicity at a concentration of 100 µg/ml, and the derived therapeutic index (TI) was >13.87. Oseltamivir showed weak anti-influenza B/Lee/40 virus activity with IC50 of 80.74 µg/ml, 50% cytotoxicity concentration of >100 µg/ml, and TI of >1.24. Sakuranetin also showed effective inhibitory effects when added at the viral attachment, entry, and postentry steps. Moreover, sakuranetin effectively inactivated influenza B/Lee/40 virus infection in dose- and temperature-dependent manners. Sakuranetin indicated an inhibitory effect in viral RNA synthesis in the presence of 100 µg/ml of sakuranetin. Overall, this research revealed that sakuranetin could inhibit influenza B/Lee/40 virus replication and that sakuranetin may be involved in the virus attachment, entry, and postentry. Therefore, sakuranetin is a good candidate for a chemopreventive agent for influenza virus-related diseases.
Assuntos
Flavonoides/farmacologia , Vírus da Influenza B/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Animais , Antivirais/farmacologia , Cães , Vírus da Influenza B/fisiologia , Concentração Inibidora 50 , Células Madin Darby de Rim Canino , Infecções por Orthomyxoviridae/tratamento farmacológico , Infecções por Orthomyxoviridae/virologia , Transdução de Sinais/efeitos dos fármacosRESUMO
The liver is an important organ and plays major roles in the human body. Because of the lack of liver donors after liver failure and drug-induced liver injury, much research has focused on developing liver alternatives and liver in vitro models for transplantation and drug screening. Although numerous studies have been conducted, these systems cannot faithfully mimic the complexity of the liver. Recently, three-dimensional (3D) cell printing technology has emerged as one of a number of innovative technologies that may help to overcome this limitation. However, a great deal of work in developing biomaterials optimized for 3D cell printing-based liver tissue engineering remains. Therefore, in this work, we developed a liver decellularized extracellular matrix (dECM) bioink for 3D cell printing applications and evaluated its characteristics. The liver dECM bioink retained the major ECM components of the liver while cellular components were effectively removed and further exhibited suitable and adjustable properties for 3D cell printing. We further studied printing parameters with the liver dECM bioink to verify the versatility and fidelity of the printing process. Stem cell differentiation and HepG2 cell functions in the liver dECM bioink in comparison to those of commercial collagen bioink were also evaluated, and the liver dECM bioink was found to induce stem cell differentiation and enhance HepG2 cell function. Consequently, the results demonstrate that the proposed liver dECM bioink is a promising bioink candidate for 3D cell printing-based liver tissue engineering.
Assuntos
Bioimpressão/métodos , Matriz Extracelular/metabolismo , Fígado/citologia , Impressão Tridimensional , Engenharia Tecidual/métodos , Animais , Materiais Biocompatíveis/química , Células da Medula Óssea/citologia , Diferenciação Celular , Sobrevivência Celular , Colágeno/química , Células Hep G2 , Humanos , Células-Tronco Mesenquimais/citologia , Suínos , Alicerces Teciduais/químicaRESUMO
We develop an athermalized IR optical system operating in the temperature range of 10°C-30°C in vacuum. As large defocus errors can occur in IR optical systems in such an environment, we estimate the amount of defocus induced by the thermoelastic effect, thermo-optic effect, and air-to-vacuum transition. Furthermore, we measure the modulation transfer function (MTF) performance of our IR optical system in a thermal vacuum chamber. Our athermal system design and accurate estimation of the air-to-vacuum transition effect enable the realization of a stable IR optical system for a space environment, which exhibits an MTF value greater than 18%.
RESUMO
PURPOSE: To compare the cerebral uptake and binding potential of [18 F]FCWAY and [18 F]Mefway in the rodent to assess their potential for imaging serotonin 1A (5-HT1A ) receptors. MATERIALS AND METHODS: In vitro liver microsomal studies were performed to evaluate the degree of defluorination. Dynamic positron emission tomography (PET) studies were then conducted for 2 h with or without an anti-defluorination agent. The regions of interest were the hippocampus and frontal cortex (5-HT1A target regions) and the cerebellum (5-HT1A nontarget region). The in vivo kinetics of the radioligands were compared based on the brain uptake values and target-to-nontarget ratio. We also performed a comparison of binding potential (BPND ) as a steady-state binding parameter. Finally, binding affinities to 5-HT1A receptors were assessed in Chinese hamster ovary cells (CHO-K1) cells expressing human recombinant 5-HT1A receptors. RESULTS: The radiochemical yield of [18 F]Mefway was slightly higher than that of [18 F]FCWAY (19 vs. 15%). With regard to metabolic stability against defluorination, both compounds exhibited similar stability in rat liver microsomes, but [18 F]Mefway displayed higher stability in the human microsome (defluorination ratio at 30 min: 32 vs. 29 in rat liver microsomes, 31 vs. 64 in human liver microsomes for [18 F]Mefway and [18 F]FCWAY, respectively). There were no significant differences in brain uptake, the target-to-nontarget ratios, and the BPND (at hippocampus, peak brain uptakes: 6.9 vs. 8.5, target-to-nontarget ratios: 6.9 vs. 8.5, BPND : 5.2 vs. 6.2 for [18 F]Mefway and [18 F]FCWAY). The binding affinity of [18 F]Mefway was considerably higher than that of [18 F]FCWAY (IC50 : 1.5 nM vs. 2.2 nM). CONCLUSION: [18 F]Mefway exhibits favorable characteristics compared to [18 F]FCWAY in rodents, and may be a promising radioligand for use in human subjects. Synapse 68:595-603, 2014. © 2014 Wiley Periodicals, Inc.
RESUMO
Two paralogue genes of warm-temperature-acclimation-associated 65-kDa protein were characterized and their mRNA expression patterns during various experimental stimulations were examined in the rockbream (Oplegnathus fasciatus; Perciformes). Rockbream Wap65 isoforms (rbWap65-1 and rbWap65-2) share basically common structural features with other teleostean orthologues and human hemopexin (HPX) at both amino acid (conserved cysteine and histidine residues) and genomic levels (ten-exon structure), although the rbWap65-2 reveals more homologous characteristics to human HPX than does rbWap65-1 isoform. Southern blot analysis indicates that each rbWap65 isoform exists as a single copy gene in the rockbream genome. Both rbWap65 genes were predicted to possess various transcription factor (TF) binding motifs related with stress and innate immunity in their 5ʹ-upstream regions, in which inflammation-related motifs were more highlighted in the rbWap65-2 than in rbWap65-1. Based on the RT-PCR assay, the liver-predominant expression pattern was more apparent in rbWap65-1 than rbWap65-2 isoform. During thermal elevation, clear upregulation was found only for the rbWap65-1. In contrast, immune stimulations (bacterial challenges, viral infection and iron overload) activated more preferentially the rbWap65-2 isoform in overall, although the inducibility was affected by the kinds of stimulators and tissue types. Taken together, our data suggest that the two paralogue rbWap65 isoforms have experienced subfunctionalization and/or neofunctionalization during their evolutionary history, in which the rbWap65-2 has retained closer, functional orthology to the human HPX while the rbWap65-1 have been diversified to be more related with thermal acclimation physiology.
Assuntos
Aclimatação/genética , Componentes do Gene/genética , Hemopexina/genética , Perciformes/genética , Sequência de Aminoácidos , Análise de Variância , Animais , Southern Blotting/veterinária , Análise por Conglomerados , Biologia Computacional , Hemopexina/imunologia , Humanos , Fígado/metabolismo , Dados de Sequência Molecular , Perciformes/imunologia , Isoformas de Proteínas/genética , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Análise de Sequência de DNA/veterinária , TemperaturaRESUMO
We have identified six putative aquaporin (AQP) genes from marine medaka Oryzias dancena (named odAQPs 1, 3, 8, 10, 11 and 12). The marine medaka AQP cDNAs encode polypeptides of 259-298 amino acids, respectively. Topology predictions showed six transmembrane domains, five connecting loops, and cytoplasmic N- and C-terminal domains, all of which is conserved among AQP molecules. Although asparagine-proline-alanine (NPA) motifs are highly conserved in most odAQP isoforms, several AQPs revealed variant types of motifs such as asparagine-proline-proline (NPP), asparagine-proline-valine (NPV) or/and asparagine-proline-serine (NPS) motifs. The phylogenic analysis showed that marine medaka AQPs had closet relationship with Japanese ricefish (medaka; Oryzias latipes) counterparts. Reverse transcription (RT)-PCR analyses showed that marine medaka AQP transcripts would be expressed in not only osmoregulatory tissues but also nonosmoregulatory tissues, and also that the expression levels of certain AQP isoforms in nonosmoregulatory tissues were readily comparable or even higher than those in typically known osmoregulatory organs. Although the overall tissue distribution patterns of AQPs were not significantly different between 0- and 30-ppt acclimated fish, the expression levels under different salinities were largely variable among isoforms and tissues. This is the first report to investigate tissue expression profiles of teleostean AQPs 11 and 12 during the long-term acclimation to freshwater and salted water.
Assuntos
Aquaporinas/genética , Regulação da Expressão Gênica , Oryzias/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/isolamento & purificação , Sequência de Aminoácidos , Animais , Aquaporinas/química , Aquaporinas/metabolismo , DNA Complementar/genética , Éxons/genética , Perfilação da Expressão Gênica , Íntrons/genética , Dados de Sequência Molecular , Especificidade de Órgãos/genética , Filogenia , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Salinidade , Alinhamento de SequênciaRESUMO
Radiolabelled autologous leukocytes have been used for the clinical diagnosis of inflammation and infection. To develop a stable and efficient radiopharmaceutical for labelling leukocytes, we prepared a novel radioiodinated cell-penetrating peptide, 125I-TAT, using a bi-functional linker. 125I-TAT was stable for two days under three different temperature conditions of -20 °C, 4 °C, and 40 °C, with its radiochemical purity remaining over 99%. Iodinated TAT was non-toxic to leukocytes with an IC50 value of over 100 µM. The labelling efficiency of 125I-TAT using 1ï½107 cells ranged from 27% to 53% when the three leukocyte cell lines were pre-treated with DMSO. This is comparable to the labelling efficiency recommended by the guideline for conventional labelling agents using 2ï½108 cells. Radioiodinated cell-penetrating peptide may be an improved radiopharmaceutical for white blood cell scans by further optimization.
Assuntos
Radioisótopos do Iodo , Leucócitos , Compostos Radiofarmacêuticos , Humanos , Compostos Radiofarmacêuticos/farmacocinética , Peptídeos Penetradores de Células/química , Marcação por Isótopo/métodosRESUMO
Cancer vasculogenesis is a pivotal focus of cancer research and treatment given its critical role in tumor development, metastasis, and the formation of vasculogenic microenvironments. Traditional approaches to investigating cancer vasculogenesis face significant challenges in accurately modeling intricate microenvironments. Recent advancements in three-dimensional (3D) bioprinting technology present promising solutions to these challenges. This review provides an overview of cancer vasculogenesis and underscores the importance of precise modeling. It juxtaposes traditional techniques with 3D bioprinting technologies, elucidating the advantages of the latter in developing cancer vasculogenesis models. Furthermore, it explores applications in pathological investigations, preclinical medication screening for personalized treatment and cancer diagnostics, and envisages future prospects for 3D bioprinted cancer vasculogenesis models. Despite notable advancements, current 3D bioprinting techniques for cancer vasculogenesis modeling have several limitations. Nonetheless, by overcoming these challenges and with technological advances, 3D bioprinting exhibits immense potential for revolutionizing the understanding of cancer vasculogenesis and augmenting treatment modalities.