Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
J Biol Chem ; 298(4): 101793, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35248533

RESUMO

Atmospheric-pressure plasmas have been widely applied for surface modification and biomedical treatment because of their ability to generate highly reactive radicals and charged particles. In negative-stain electron microscopy (Neg-EM) and cryogenic electron microscopy (cryo-EM), plasmas have been used to generate hydrophilic surfaces and eliminate surface contaminants to embed specimens onto grids. In addition, plasma treatment is a prerequisite for negative-stain and Quantifoil grids, whose surfaces are coated with hydrophobic amorphous carbon. Although the conventional glow discharge system has been used successfully in this purpose, there has been no further effort to take an advantage from the recent progress in the plasma field. Here, we developed a nonthermal atmospheric plasma jet system as an alternative tool for treatment of surfaces. The low-temperature plasma is a nonequilibrium system that has been widely used in biomedical area. Unlike conventional glow discharge systems, the plasma jet system successfully cleans and introduces hydrophilicity on the grid surface in the ambient environment without a vacuum. Therefore, we anticipate that the plasma jet system will have numerous benefits, such as convenience and versatility, as well as having potential applications in surface modification for both negative-stain and cryo-EM grid treatment.


Assuntos
Microscopia Crioeletrônica , Temperatura Baixa , Microscopia Crioeletrônica/instrumentação , Vácuo
2.
Int J Mol Sci ; 24(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36769108

RESUMO

This study aimed to identify a distant-recurrence image biomarker in NSCLC by investigating correlations between heterogeneity functional gene expression and fluorine-18-2-fluoro-2-deoxy-D-glucose positron emission tomography (18F-FDG PET) image features of NSCLC patients. RNA-sequencing data and 18F-FDG PET images of 53 patients with NSCLC (19 with distant recurrence and 34 without recurrence) from The Cancer Imaging Archive and The Cancer Genome Atlas Program databases were used in a combined analysis. Weighted correlation network analysis was performed to identify gene groups related to distant recurrence. Genes were selected for functions related to distant recurrence. In total, 47 image features were extracted from PET images as radiomics. The relationship between gene expression and image features was estimated using a hypergeometric distribution test with the Pearson correlation method. The distant recurrence prediction model was validated by a random forest (RF) algorithm using image texture features and related gene expression. In total, 37 gene modules were identified by gene-expression pattern with weighted gene co-expression network analysis. The gene modules with the highest significance were selected (p-value < 0.05). Nine genes with high protein-protein interaction and area under the curve (AUC) were identified as hub genes involved in the proliferation function, which plays an important role in distant recurrence of cancer. Four image features (GLRLM_SRHGE, GLRLM_HGRE, SUVmean, and GLZLM_GLNU) and six genes were identified to be correlated (p-value < 0.1). AUCs (accuracy: 0.59, AUC: 0.729) from the 47 image texture features and AUCs (accuracy: 0.767, AUC: 0.808) from hub genes were calculated using the RF algorithm. AUCs (accuracy: 0.783, AUC: 0.912) from the four image texture features and six correlated genes and AUCs (accuracy: 0.738, AUC: 0.779) from only the four image texture features were calculated using the RF algorithm. The four image texture features validated by heterogeneity group gene expression were found to be related to cancer heterogeneity. The identification of these image texture features demonstrated that advanced prediction of NSCLC distant recurrence is possible using the image biomarker.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Fluordesoxiglucose F18 , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/genética , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/genética , Biomarcadores , Proliferação de Células , Estudos Retrospectivos
3.
Int J Mol Sci ; 22(15)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34360705

RESUMO

Human adipose-derived stem cells (hADSCs) are types of mesenchymal stem cells (MSCs) that have been used as tissue engineering models for bone, cartilage, muscle, marrow stroma, tendon, fat and other connective tissues. Tissue regeneration materials composed of hADSCs have the potential to play an important role in reconstituting damaged tissue or diseased mesenchymal tissue. In this study, we assessed and investigated the osteogenesis of hADSCs in both two-dimensional (2D) and three-dimensional (3D) culture conditions. We confirmed that the hADSCs successfully differentiated into bone tissues by ARS staining and quantitative RT-PCR. To gain insight into the detailed biological difference between the two culture conditions, we profiled the overall gene expression by analyzing the whole transcriptome sequencing data using various bioinformatic methods. We profiled the overall gene expression through RNA-Seq and further analyzed this using various bioinformatic methods. During differential gene expression testing, significant differences in the gene expressions between hADSCs cultured in 2D and 3D conditions were observed. The genes related to skeletal development, bone development and bone remodeling processes were overexpressed in the 3D culture condition as compared to the 2D culture condition. In summary, our RNA-Seq-based study proves effective in providing new insights that contribute toward achieving a genome-wide understanding of gene regulation in mesenchymal stem cell osteogenic differentiation and bone tissue regeneration within the 3D culture system.


Assuntos
Tecido Adiposo/metabolismo , Técnicas de Cultura de Células , Osteogênese , RNA-Seq , Células-Tronco/metabolismo , Tecido Adiposo/citologia , Humanos , Células-Tronco/citologia
4.
Biochemistry ; 59(46): 4470-4480, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33136372

RESUMO

Peptidoglycan is a vital component of the bacterial cell wall, and its dynamic remodeling by NlpC/p60 hydrolases is crucial for proper cell division and survival. Beyond these essential functions, we previously discovered that Enterococcus species express and secrete the NlpC/p60 hydrolase-secreted antigen A (SagA), whose catalytic activity can modulate host immune responses in animal models. However, the localization and peptidoglycan hydrolase activity of SagA in Enterococcus was still unclear. In this study, we show that SagA contributes to a triseptal structure in dividing cells of enterococci and localizes to sites of cell division through its N-terminal coiled-coil domain. Using molecular modeling and site-directed mutagenesis, we identify amino acid residues within the SagA-NlpC/p60 domain that are crucial for catalytic activity and potential substrate binding. Notably, these studies revealed that SagA may function via a catalytic Cys-His dyad instead of the predicted Cys-His-His triad, which is conserved in SagA orthologs from other Enterococcus species. Our results provide key additional insight into peptidoglycan remodeling in Enterococcus by SagA NlpC/p60 hydrolases.


Assuntos
Proteínas de Bactérias/metabolismo , Enterococcus/metabolismo , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Proteínas de Bactérias/genética , Domínio Catalítico , Divisão Celular , Enterococcus/citologia , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , N-Acetil-Muramil-L-Alanina Amidase/genética , Peptidoglicano/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Relação Estrutura-Atividade
5.
Bioorg Med Chem ; 28(9): 115440, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32205046

RESUMO

A chip-based screening system for IκB kinase ß (IKKß) has been developed by physically immobilizing the substrate IκBα on a glass matrix using a calixarene linker. Phosphorylation of IκBα by IKKß and ATP was quantitated using a fluorescently labeled antibody. Using this efficient assay system a chemical library of 2000 bioactive compounds was screened against IKKß and four were identified as good inhibitors, namely, aurintricarboxylic acid, diosmin, ellagic acid, and hematein. None of them have been reported to be an inhibitor of IKKß although they were implicated in various NFκB-mediated biological processes. Our enzyme-based assay showed that IC50 of the four inhibitors is comparable with that of IKK-16, a previously known strong inhibitor. Molecular docking simulation shows that the hydrophobic moiety of an inhibitor interacts with the four hydrophobic residues (Leu21, Val29, Val152, and Ile165) of the active site. The MM-PBSA calculation suggests that these hydrophobic interactions appear to be the predominant contributor to the binding free energy. As IKKß is ubiquitously expressed in various cell types and executes many biological functions, the enzyme and cell specificity of the four inhibitors need to be rigorously tested before accepted as a drug candidate.


Assuntos
Quinase I-kappa B/antagonistas & inibidores , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Avaliação Pré-Clínica de Medicamentos , Humanos , Quinase I-kappa B/metabolismo , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade , Termodinâmica
6.
Sensors (Basel) ; 20(10)2020 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-32429530

RESUMO

The size of a device and its adaptability to human properties are important factors in developing a wearable device. In wearable robot research, therefore, soft materials and tendon transmissions have been utilized to make robots compact and adaptable to the human body. However, when used for wearable robots, these methods sometimes cause uncertainties that originate from elongation of the soft material or from undefined human properties. In this research, to consider these uncertainties, we propose a data-driven method that identifies both kinematic and stiffness parameters using tension and wire stroke of the actuators. Through kinematic identification, a method is proposed to find the exact joint position as a function of the joint angle. Through stiffness identification, the relationship between the actuation force and the joint angle is obtained using Gaussian Process Regression (GPR). As a result, by applying the proposed method to a specific robot, the research outlined in this paper verifies how the proposed method can be used in wearable robot applications. This work examines a novel wearable robot named Exo-Index, which assists a human's index finger through the use of three actuators. The proposed identification methods enable control of the wearable robot to result in appropriate postures for grasping objects of different shapes and sizes.


Assuntos
Robótica , Tendões/fisiologia , Dispositivos Eletrônicos Vestíveis , Mãos , Humanos
7.
J Environ Manage ; 239: 66-72, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30889519

RESUMO

This study presents a promising approach that enhances the sludge fermentation by using basic oxygen furnace (BOF) slag as an alkaline source for the first time. BOF slag added to the reactors could maintain a stable alkaline condition due to continuous release of Ca(OH)2 from slag. The reactor pH could be adjusted to a target value by the choice of the BOF slag dose. Concentrations of soluble chemical oxygen demand (sCOD) and short-chain carboxylates (SCCs) were substantially increased in the presence of BOF slag. At a BOF slag mass to sludge volume ratio of 1/10 g slag/L sludge, the reactor pH was maintained at 10 and the concentration of SCCs produced was the highest (i.e., 3510 mg COD L-1 from 14,000 mg VS L-1 of sludge mixture), followed by B/S ratios of 1/20, 1.50, 1/5, and 1/2.5 g slag L-1 sludge with reactor pH of 9.4, 8.9, 10.5, and 11, respectively. Our data suggest that the pH value that best facilitates the degradation of sludge into SCCs and inhibit the conversion of SCCs into biogas is around 10. Interestingly, compositions of the accumulated SCCs varied greatly depending on the BOF slag dose. BOF slag showed phosphorus removal ability due to enhanced precipitation of Ca-PO43--P complexes, which significantly lowered PO43- concentration of the reactor effluent.


Assuntos
Oxigênio , Fosfatos , Fermentação , Fósforo , Esgotos
8.
Biochem Biophys Res Commun ; 498(3): 609-615, 2018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29524413

RESUMO

Heme oxygenase-1 (HO-1) has been implicated in tumor progression, but the underlying molecular mechanisms remain largely unknown. Transforming growth factor-ß1 (TGF-ß1) exhibits cytostatic and apoptotic effects in hepatocytes and several types of hepatocellular carcinoma (HCC) cell lines, and deregulation of its signaling pathway is linked to hepatic tumorigenesis. In the present study, we observed that HO-1 is expressed at higher levels in HCC tissues than in paired normal tissues. Moreover, TGF-ß1-induced cell cycle arrest and up-regulation of cyclin-dependent kinase inhibitors in HCC cell lines were significantly attenuated by overexpression of HO-1 or treatment with tricarbonyldichlororuthenium(II) dimer ([Ru(CO)3Cl2]2, suggesting an inhibitory role of the HO-1/CO axis in TGF-ß signaling to growth inhibition in HCC cell lines. Interestingly, we observed that [Ru(CO)3Cl2]2 inhibits TGF-ß1-induced Smad3-dependent reporter activity without affecting its C-terminus phosphorylation, complex formation with Smad4, and nuclear translocation. Additional experiments revealed that HO-1/CO axis selectively induces phosphorylation of Smad3 at Thr-179 residue in the linker region through activation of extracellular signal-activated kinase (ERK) 1/2. Transfection with a phospho-deficient Smad3 (T179A) mutant or treatment with FR180204, a specific inhibitor for ERK1/2, significantly reversed the inhibitory effects of HO-1 and [Ru(CO)3Cl2]2 on cell cycle arrest induced by TGF-ß1. These findings for the first time demonstrate that HO-1/CO axis confer resistance of HCC cells to TGF-ß growth inhibitory signal by increasing Smad3 phosphorylation at Thr-179 via ERK1/2 pathway.


Assuntos
Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Transdução de Sinais , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Monóxido de Carbono/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células , Heme Oxigenase-1/metabolismo , Humanos , Neoplasias Hepáticas/patologia , Sistema de Sinalização das MAP Quinases , Fosforilação
9.
Biotechnol Bioeng ; 114(4): 903-914, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27775170

RESUMO

The in vitro generation of cell-based three dimensional (3D) nerve tissue is an attractive subject to improve graft survival and integration into host tissue for neural tissue regeneration or to model biological events in stem cell differentiation. Although 3D organotypic culture strategies are well established for 3D nerve tissue formation of pluripotent stem cells to study underlying biology in nerve development, cell-based nerve tissues have not been developed using human postnatal stem cells with therapeutic potential. Here, we established a culture strategy for the generation of in vitro cell-based 3D nerve tissue from postnatal stem cells from apical papilla (SCAPs) of teeth, which originate from neural crest-derived ectomesenchyme cells. A stem cell population capable of differentiating into neural cell lineages was generated during the ex vivo expansion of SCAPs in the presence of EGF and bFGF, and SCAPs differentiated into neural cells, showing neural cell lineage-related molecular and gene expression profiles, morphological changes and electrophysical property under neural-inductive culture conditions. Moreover, we showed the first evidence that 3D cell-based nerve-like tissue with axons and myelin structures could be generated from SCAPs via 3D organotypic culture using an integrated bioprocess composed of polyethylene glycol (PEG) microwell-mediated cell spheroid formation and subsequent dynamic culture in a high aspect ratio vessel (HARV) bioreactor. In conclusion, the culture strategy in our study provides a novel approach to develop in vitro engineered nerve tissue using SCAPs and a foundation to study biological events in the neural differentiation of postnatal stem cells. Biotechnol. Bioeng. 2017;114: 903-914. © 2016 Wiley Periodicals, Inc.


Assuntos
Reatores Biológicos , Papila Dentária/citologia , Tecido Nervoso/citologia , Células-Tronco/citologia , Células-Tronco/fisiologia , Engenharia Tecidual/métodos , Adolescente , Diferenciação Celular , Criança , Humanos , Dente Molar/citologia , Esferoides Celulares/citologia
10.
J Immunol ; 194(9): 4287-97, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25825445

RESUMO

PGs are emerging as important immune modulators. Since our report on the expression of PG synthases in human follicular dendritic cells, we investigated the potential immunoregulatory function of PGs and their production mechanisms. In this study, we explored the intracellular signaling molecules mediating TGF-ß-induced cyclooxygenase (COX)-2 augmentation in follicular dendritic cell-like cells. TGF-ß triggered phosphorylation of Smad3 and ERK, which were essential for the increase in COX-2 protein. Interestingly, depletion of suppressor of cytokine signaling 1 (SOCS1) resulted in an almost complete inhibition of Smad3 phosphorylation and COX-2 induction. Nuclear translocation of Smad3 was inhibited in SOCS1-depleted cells. SOCS1 knockdown also downregulated TGF-ß-stimulated Snail expression and its binding to the Cox-2 promoter. In contrast, overexpression of SOCS1 gave rise to a significant increase in Snail and COX-2 proteins. SOCS1 was reported to be a negative regulator of cytokine signaling by various investigators. However, our current data suggest that SOCS1 promotes TGF-ß-induced COX-2 expression and PG production by facilitating Smad3 phosphorylation and Snail binding to the Cox-2 promoter. The complete understanding of the biological function of SOCS1 might be obtained via extensive studies with diverse cell types.


Assuntos
Células Dendríticas Foliculares/imunologia , Células Dendríticas Foliculares/metabolismo , Prostaglandinas/biossíntese , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Células Cultivadas , Ciclo-Oxigenase 2/metabolismo , Células Dendríticas Foliculares/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Fosforilação , Transporte Proteico , Transdução de Sinais , Proteína Smad3/metabolismo , Proteína 1 Supressora da Sinalização de Citocina , Proteínas Supressoras da Sinalização de Citocina/genética , Fator de Crescimento Transformador beta/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
11.
J Neuroeng Rehabil ; 14(1): 15, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28222759

RESUMO

BACKGROUND: Although various hand assist devices have been commercialized for people with paralysis, they are somewhat limited in terms of tool fixation and device attachment method. Hand exoskeleton robots allow users to grasp a wider range of tools but are heavy, complicated, and bulky owing to the presence of numerous actuators and controllers. The GRIPIT hand assist device overcomes the limitations of both conventional devices and exoskeleton robots by providing improved tool fixation and device attachment in a lightweight and compact device. GRIPIT has been designed to assist tripod grasp for people with spinal cord injury because this grasp posture is frequently used in school and offices for such activities as writing and grasping small objects. METHODS: The main development objective of GRIPIT is to assist users to grasp tools with their own hand using a lightweight, compact assistive device that is manually operated via a single wire. GRIPIT consists of only a glove, a wire, and a small structure that maintains tendon tension to permit a stable grasp. The tendon routing points are designed to apply force to the thumb, index finger, and middle finger to form a tripod grasp. A tension-maintenance structure sustains the grasp posture with appropriate tension. Following device development, four people with spinal cord injury were recruited to verify the writing performance of GRIPIT compared to the performance of a conventional penholder and handwriting. Writing was chosen as the assessment task because it requires a tripod grasp, which is one of the main performance objectives of GRIPIT. RESULTS: New assessment, which includes six different writing tasks, was devised to measure writing ability from various viewpoints including both qualitative and quantitative methods, while most conventional assessments include only qualitative methods or simple time measuring assessments. Appearance, portability, difficulty of wearing, difficulty of grasping the subject, writing sensation, fatigability, and legibility were measured to assess qualitative performance while writing various words and sentences. Results showed that GRIPIT is relatively complicated to wear and use compared to a conventional assist device but has advantages for writing sensation, fatigability, and legibility because it affords sufficient grasp force during writing. Two quantitative performance factors were assessed, accuracy of writing and solidity of writing. To assess accuracy of writing, we asked subjects to draw various figures under given conditions. To assess solidity of writing, pen tip force and the angle variation of the pen were measured. Quantitative evaluation results showed that GRIPIT helps users to write accurately without pen shakes even high force is applied on the pen. CONCLUSIONS: Qualitative and quantitative results were better when subjects used GRIPIT than when they used the conventional penholder, mainly because GRIPIT allowed them to exert a higher grasp force. Grasp force is important because disabled people cannot control their fingers and thus need to move their entire arm to write, while non-disabled people only need to move their fingers to write. The tension-maintenance structure developed for GRIPIT provides appropriate grasp force and moment balance on the user's hand, but the other writing method only fixes the pen using friction force or requires the user's arm to generate a grasp force.


Assuntos
Exoesqueleto Energizado , Tecnologia Assistiva , Traumatismos da Medula Espinal/reabilitação , Adulto , Mãos , Força da Mão , Escrita Manual , Humanos , Masculino
12.
Biochem Biophys Res Commun ; 472(3): 502-7, 2016 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-26966064

RESUMO

Cyclin-dependent kinases (Cdks) play important roles in control of cell division. Cdk5 is an atypical member of Cdk family with non-cyclin-like regulatory subunit, p35, but its role in cell cycle progression is still unclear. In the present study, we investigated the role of Cdk5/p35 on transforming growth factor-ß1 (TGF-ß1)-induced cell cycle arrest. In human MCF10A mammary epithelial cells, TGF-ß1 induced cell cycle arrest at G1 phase and increased p27KIP1 expression. Interestingly, pretreatment with roscovitine, an inhibitor of Cdk5, or transfection with small interfering (si) RNAs specific to Cdk5 and p35 significantly attenuated the TGF-ß1-induced p27KIP1 expression and cell cycle arrest. TGF-ß1 increased Cdk5 activity via up-regulation of p35 gene at transcriptional level, and these effects were abolished by transfection with Smad3 siRNA or infection of adenovirus carrying Smad3 mutant at the C-tail (3SA). Chromatin immunoprecipitation assay further revealed that wild type Smad3, but not mutant Smad3 (3SA), binds to the region of the p35 promoter region (-1000--755) in a TGF-ß1-dependent manner. These results for the first time demonstrate a role of Cdk5/p35 in the regulation of cell cycle progression modulated by TGF-ß1.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Pontos de Checagem do Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/metabolismo , Quinase 5 Dependente de Ciclina/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Glândulas Mamárias Humanas/metabolismo , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Linhagem Celular , Humanos , Glândulas Mamárias Humanas/citologia
13.
Soft Robot ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136104

RESUMO

Usability and functionality are important when designing hand-wearable robots; however, satisfying both indicators remains a challenging issue, even though researchers have made important progress with state-of-the-art robot components. Although hand-wearable robots require sufficient actuators and sensors considering their functionality, these components complicate the robot. Further, robot compliance should be carefully considered because it affects both indicators. For example, a robot's softness makes it compact (improving usability) but also induces inaccurate force transmission (impacting functionality). To address this issue, we present in this paper a tendon-driven, hybrid, hand-wearable robot, named Exo-Glove Shell. The proposed robot assists in three primitive motions (i.e., thumb opposition motion, which is known as one of the most important hand functions, and flexion/extension of the index/middle fingers) while employing only four actuators by using an under-actuation mechanism. The Exo-Glove Shell was designed by combining a soft robotic body with rigid tendon router modules. The use of soft garments enables the robot to be fitted well to users without customization or adjustment of the mechanisms; the metal routers facilitate accurate force transmission. User tests conducted with an individual with a spinal cord injury (SCI) found that the robot could sufficiently and reliably assist in three primitive motions through its four actuators. The research also determined that the robot can assist in various postures with sufficient stability. Based on the grasp stability index proposed in this paper, user stability-when assisted by the proposed robot-was found to be 4.75 times that of an SCI person who did not use the Exo-Glove Shell.

14.
Biochem Biophys Res Commun ; 432(1): 193-7, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23375543

RESUMO

The seven members of the human 14-3-3 family play crucial roles in a diverse range of cellular responses including cell cycle progression, DNA damage checkpoint, and apoptosis. One particular isoform, 14-3-3 σ, the p53 target gene, is a unique tumor suppressor. We here report 14-3-3 σ as a transforming growth factor-beta (TGF-ß) target gene. In mammary epithelial cells, TGF-ß selectively induced expression of 14-3-3 σ at both mRNA and protein levels, and this induction was dependent on Smad3 not on p53. In addition, blockade of non-canonical Smad-independent pathways, including MAP kinases and Rho GTPases, did not affect the TGF-ß1-induced 14-3-3 σ expression. Our data provides the first evidence that 14-3-3 σ is a Smad3-dependent target gene of TGF-ß1.


Assuntos
Proteínas 14-3-3/genética , Regulação da Expressão Gênica , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Animais , Linhagem Celular , Células Hep G2 , Humanos , Camundongos , Proteína Smad3/genética , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima
15.
Biochem Biophys Res Commun ; 435(4): 634-9, 2013 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-23685151

RESUMO

Hydrogen peroxide (H2O2) functions as a second messenger in growth factor receptor-mediated intracellular signaling cascade and is tumorigenic by virtue of its ability to promote cell proliferation; however, the mechanisms underlying the growth stimulatory action of H2O2 are less understood. Here we report an important mechanism for antagonistic effects of H2O2 on growth inhibitory response to transforming growth factor-ß1 (TGF-ß1). In Mv1Lu and HepG2 cells, pretreatment of H2O2 (0.05-0.2 mM) completely blocked TGF-ß1-mediated induction of p15(INK4B) expression and increase of its promoter activity. Interestingly, H2O2 selectively suppressed the transcriptional activation potential of Smad3, not Smad2, in the absence of effects on TGF-ß1-induced phosphorylation of the COOH-tail SSXS motif of Smad3 and its nuclear translocation. Mechanism studies showed that H2O2 increases the phosphorylation of Smad3 at the middle linker region in a concentration- and time-dependent manner and this effect is mediated by activation of extracellular signal-activated kinase 1/2 through Akt. Furthermore, expression of a mutant Smad3 in which linker phosphorylation sites were ablated significantly abrogated the inhibitory effects of H2O2 on TGF-ß1-induced increase of p15(INK4B)-Luc reporter activity and blockade of cell cycle progression from G1 to S phase. These findings for the first time define H2O2 as a signaling molecule that modulate Smad3 linker phosphorylation and its transcriptional activity, thus providing a potential mechanism whereby H2O2 antagonizes the cytostatic function of TGF-ß1.


Assuntos
Pontos de Checagem do Ciclo Celular/fisiologia , Peróxido de Hidrogênio/farmacologia , Sistema de Sinalização das MAP Quinases/fisiologia , Fator de Crescimento Transformador beta1/metabolismo , Animais , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Células Hep G2 , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Vison , Fosforilação/efeitos dos fármacos
16.
ACS Nano ; 17(6): 6011-6022, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36926824

RESUMO

Cryogenic electron microscopy (cryo-EM) has become a widely used tool for determining the protein structure. Despite recent technical advances, sample preparation remains a major bottleneck for several reasons, including protein denaturation at the air-water interface, the presence of preferred orientations, nonuniform ice layers, etc. Graphene, a two-dimensional allotrope of carbon consisting of a single atomic layer, has recently gained attention as a near-ideal support film for cryo-EM that can overcome these challenges because of its superior properties, including mechanical strength and electrical conductivity. Here, we introduce a reliable, easily implemented, and reproducible method to produce 36 graphene-coated grids within 1.5 days. To demonstrate their practical application, we determined the cryo-EM structure of Methylococcus capsulatus soluble methane monooxygenase hydroxylase (sMMOH) at resolutions of 2.9 and 2.5 Å using Quantifoil and graphene-coated grids, respectively. We found that the graphene-coated grid has several advantages, including a smaller amount of protein required and avoiding protein denaturation at the air-water interface. By comparing the cryo-EM structure of sMMOH with its crystal structure, we identified subtle yet significant geometrical changes at the nonheme diiron center, which may better indicate the active site configuration of sMMOH in the resting/oxidized state.


Assuntos
Grafite , Methylococcus capsulatus , Grafite/química , Microscopia Crioeletrônica/métodos , Água , Proteínas
17.
Immune Netw ; 23(4): e33, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37670807

RESUMO

Vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been acknowledged as an effective mean of preventing infection and hospitalization. However, the emergence of highly transmissible SARS-CoV-2 variants of concern (VOCs) has led to substantial increase in infections among children and adolescents. Vaccine-induced immunity and longevity have not been well defined in this population. Therefore, we aimed to analyze humoral and cellular immune responses against ancestral and SARS-CoV-2 variants after two shots of the BNT162b2 vaccine in healthy adolescents. Although vaccination induced a robust increase of spike-specific binding Abs and neutralizing Abs against the ancestral and SARS-CoV-2 variants, the neutralizing activity against the Omicron variant was significantly low. On the contrary, vaccine-induced memory CD4+ T cells exhibited substantial responses against both ancestral and Omicron spike proteins. Notably, CD4+ T cell responses against both ancestral and Omicron strains were preserved at 3 months after two shots of the BNT162b2 vaccine without waning. Polyfunctionality of vaccine-induced memory T cells was also preserved in response to Omicron spike protein. The present findings characterize the protective immunity of vaccination for adolescents in the era of continuous emergence of variants/subvariants.

18.
Biochem Biophys Res Commun ; 420(2): 293-6, 2012 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-22417828

RESUMO

Cell division cycle 25A (Cdc25A), a dual specificity protein phosphatase, exhibits anti-apoptotic activity, but the underlying molecular mechanisms are poorly characterized. Here we report that Cdc25A inhibits cisplatin-induced apoptotic cell death by stimulating nuclear factor-kappa B (NF-κB) activity. In HEK-293 cells, Cdc25A decreased protein level of inhibitor subunit kappa B alpha (Iκ-Bα) in association with increased serine 32-phosphorylation, followed by stimulation of transcriptional activity of NF-κB. Inhibition of NF-κB activity by chemical inhibitor or overexpression of Iκ-Bα in Cdc25A-elevated cancer cells resistant to cisplatin improved their sensitivity to cisplatin-induced apoptosis. Our data show for the first time that Cdc25A has an important physiological role in NF-κB activity regulation and it may be an important survival mechanism of cancer cells.


Assuntos
Apoptose/fisiologia , Resistencia a Medicamentos Antineoplásicos , Quinase I-kappa B/metabolismo , NF-kappa B/metabolismo , Fosfatases cdc25/metabolismo , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Núcleo Celular/metabolismo , Sobrevivência Celular/genética , Cisplatino/farmacologia , Células HEK293 , Humanos , Fosforilação , Fator de Transcrição RelA/metabolismo , Fosfatases cdc25/genética
19.
Biochem Biophys Res Commun ; 420(2): 288-92, 2012 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-22421218

RESUMO

Smad7, an inhibitory Smad, acts as a key regulator forming autoinhibitory feedback loop in transforming growth factor-beta (TGF-ß) signaling. However, a growing body of evidences suggests that Smad7 is capable of apoptotic function. In the present study, we have demonstrated a proapoptotic function of Smad7 as a negative regulator of survival protein heme oxygenase-1 (HO-1). The HO-1 protein level was elevated in cisplatin-resistant A549 human lung cancer cells and blockade of HO-1 activation sensitized the cells to apoptosis. Interestingly, overexpression of Smad7 decreased HO-1 gene expression and its enzymatic activity. Notably, Smad7 reduced Akt activity and infection with adenovirus expressing a constitutively active form of the Akt reversed the inhibitory effects of Smad7 to HO-1, indicating a negative action mechanism of Smad7 to Akt-HO-1-linked survival pathway. Consistently, Smad7 sensitized A549 cells to cisplatin-induced apoptosis and these effects were dependent on HO-1 and Akt inhibition. Based on these findings, we suggest that targeting Smad7 may be an efficient strategy for overcoming drug-resistance in cancer therapy.


Assuntos
Apoptose/genética , Resistencia a Medicamentos Antineoplásicos/genética , Heme Oxigenase-1/antagonistas & inibidores , Neoplasias Pulmonares/metabolismo , Proteína Smad7/metabolismo , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Cisplatino/farmacologia , Heme Oxigenase-1/genética , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Smad7/genética
20.
J Nanosci Nanotechnol ; 12(7): 5510-3, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22966600

RESUMO

In the present work, the evolution of nanoparticles during annealing and hot-consolidation in mechanically alloyed Ni-22Cr-1.5Y, Ni-22Cr-1.5Y2O3 and Ni-3% Y2O3 was examined. The high-energy ball-milling of elemental powders resulted in the complete dissolution of the constituent Cr, Y, or Y2O3, forming a Ni-based solid solution. During the subsequent annealing, however, oxide particles precipitated from the solid solution. In the case of mechanically alloyed Ni-22Cr-1.5Y2O3, over-grown Cr2O3 precipitated at a temperature as low as above approximately 500 degrees C and ternary YCrO3 particles precipitated at 1100 degrees C. In the case of mechanically alloyed Ni-22Cr-1.5Y, on the other hand, the binary Y2O3 phase precipitated at 1100 degrees C during spark plasma sintering. The presence of Cr in the alloy composition facilitated the formation of Cr2O3 or YCrO3, and the precipitated oxides were highly prone to grain growth during hot-consolidation, sometimes reaching several micrometers. In Cr-exempt Ni-3%Y or Ni-3% Y2O3, however, the growth of nanodispersoids was restrained even at temperatures as high as 1000 degrees C and the resulting dispersoid was only nano-sized Y2O3.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA