Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Genome Res ; 28(6): 859-868, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29712754

RESUMO

Pooled CRISPR screens based on lentiviral systems have been widely applied to identify the effect of gene knockout on cellular phenotype. Although many screens were successful, they also have the limitation that genes conferring mild phenotypes or those essential for growth can be overlooked, as every genetic perturbation is incorporated in the same population. Arrayed screens, on the other hand, incorporate a single genetic perturbation in each well and could overcome these limitations. However, arrayed screens based on siRNA-mediated knockdown were recently criticized for low reproducibility caused by incomplete inhibition of gene expression. To overcome these limitations, we developed a novel arrayed CRISPR screen based on a plasmid library expressing a single guide RNA (sgRNA) and disrupted 1514 genes, encoding kinases, proteins related to endocytosis, and Golgi-localized proteins, individually using 4542 sgRNAs (three sgRNAs per gene). This screen revealed host factors required for infection by coxsackievirus B3 (CVB3) from Picornaviridae, which includes human pathogens causing diverse diseases. Many host factors that had been overlooked in a conventional pooled screen were identified for CVB3 infection, including entry-related factors, translational initiation factors, and several replication factors with different functions, demonstrating the advantage of the arrayed screen. This screen was quite reliable and reproducible, as most genes identified in the primary screen were confirmed in secondary screens. Moreover, ACBD3, whose phenotype was not affected by siRNA-mediated knockdown, was reliably identified. We propose that arrayed CRISPR screens based on sgRNA plasmid libraries are powerful tools for arrayed genetic screening and applicable to larger-scale screens.


Assuntos
Infecções por Coxsackievirus/genética , Enterovirus/genética , Regulação da Expressão Gênica/genética , Interações Hospedeiro-Patógeno/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Infecções por Coxsackievirus/virologia , Enterovirus/patogenicidade , Técnicas de Inativação de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , RNA Interferente Pequeno/genética
2.
Analyst ; 145(4): 1473-1482, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-31868873

RESUMO

It has been 100 years since the worst flu (Spanish flu) mankind has ever experienced. Rapid, accurate diagnosis and subtyping of flu are still an urgent unmet medical need. By using surrogate virus-based SELEX (viro-SELEX), we report here multiple advances incorporated into the field of flu diagnostics: (i) aptamers that can bind to the native virus well even though they cannot bind strongly to a recombinant protein (hemagglutinin); (ii) a couple of aptamers that can target a broad range of strains belonging to the H1N1 subtype and detect only the H1N1 subtype and nothing else; (iii) a highly sensitive lateral flow assay system (limit of detection is 0.08 HAU) using fluorescence-tagged aptamers. The viro-SELEX method of aptamer selection in conjunction with a fluorescent tag on aptamers is a very useful approach to develop highly sensitive, specific, portable, rapid, and quantitative point-of-care testing diagnostic tools for the future.


Assuntos
Aptâmeros de Nucleotídeos/metabolismo , Vírus da Influenza A/isolamento & purificação , Técnica de Seleção de Aptâmeros/métodos , Proteínas Virais/metabolismo , Animais , Aptâmeros de Nucleotídeos/química , Colódio/química , Ouro/química , Vírus da Influenza A/metabolismo , Limite de Detecção , Nanopartículas Metálicas/química , Células Sf9 , Spodoptera , Proteínas Virais/análise
3.
J Biol Chem ; 292(25): 10664-10671, 2017 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-28446605

RESUMO

Several groups have used genome-wide libraries of lentiviruses encoding small guide RNAs (sgRNAs) for genetic screens. In most cases, sgRNA expression cassettes are integrated into cells by using lentiviruses, and target genes are statistically estimated by the readout of sgRNA sequences after targeted sequencing. We present a new virus-free method for human gene knockout screens using a genome-wide library of CRISPR/Cas9 sgRNAs based on plasmids and target gene identification via whole-genome sequencing (WGS) confirmation of authentic mutations rather than statistical estimation through targeted amplicon sequencing. We used 30,840 pairs of individually synthesized oligonucleotides to construct the genome-scale sgRNA library, collectively targeting 10,280 human genes (i.e. three sgRNAs per gene). These plasmid libraries were co-transfected with a Cas9-expression plasmid into human cells, which were then treated with cytotoxic drugs or viruses. Only cells lacking key factors essential for cytotoxic drug metabolism or viral infection were able to survive. Genomic DNA isolated from cells that survived these challenges was subjected to WGS to directly identify CRISPR/Cas9-mediated causal mutations essential for cell survival. With this approach, we were able to identify known and novel genes essential for viral infection in human cells. We propose that genome-wide sgRNA screens based on plasmids coupled with WGS are powerful tools for forward genetics studies and drug target discovery.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala , Poliomielite/genética , Poliovirus , Técnicas de Silenciamento de Genes , Estudo de Associação Genômica Ampla , Células HeLa , Humanos , Poliomielite/metabolismo
4.
Hepatology ; 66(3): 758-771, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28329914

RESUMO

Hepatitis C virus (HCV) alters mitochondrial dynamics associated with persistent viral infection and suppression of innate immunity. Mitochondrial dysfunction is also a pathologic feature of direct-acting antiviral (DAA) treatment. Despite the high efficacy of DAAs, their use in treating patients with chronic hepatitis C in interferon-sparing regimens occasionally produces undesirable side effects such as fatigue, migraine, and other conditions, which may be linked to mitochondrial dysfunction. Here, we show that clinically prescribed DAAs, including sofosbuvir, affect mitochondrial dynamics. To counter these adverse effects, we examined HCV-induced and DAA-induced aberrant mitochondrial dynamics modulated by ginsenoside, which is known to support healthy mitochondrial physiology and the innate immune system. We screened several ginsenoside compounds showing antiviral activity using a robust HCV cell culture system. We investigated the role of ginsenosides in antiviral efficacy, alteration of mitochondrial transmembrane potential, abnormal mitochondrial fission, its upstream signaling, and mitophagic process caused by HCV infection or DAA treatment. Only one of the compounds, ginsenoside Rg3 (G-Rg3), exhibited notable and promising anti-HCV potential. Treatment of HCV-infected cells with G-Rg3 increased HCV core protein-mediated reduction in the expression level of cytosolic p21, required for increasing cyclin-dependent kinase 1 activity, which catalyzes Ser616 phosphorylation of dynamin-related protein 1. The HCV-induced mitophagy, which follows mitochondrial fission, was also rescued by G-Rg3 treatment. CONCLUSION: G-Rg3 inhibits HCV propagation. Its antiviral mechanism involves restoring the HCV-induced dynamin-related protein 1-mediated aberrant mitochondrial fission process, thereby resulting in suppression of persistent HCV infection. (Hepatology 2017;66:758-771).


Assuntos
Ginsenosídeos/farmacologia , Hepacivirus/efeitos dos fármacos , Mitocôndrias Hepáticas/efeitos dos fármacos , Dinâmica Mitocondrial/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Biópsia por Agulha , Western Blotting , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Imunofluorescência , Hepacivirus/fisiologia , Hepatite C Crônica/tratamento farmacológico , Hepatite C Crônica/patologia , Humanos , Imunidade Inata/efeitos dos fármacos , Imuno-Histoquímica , Dinâmica Mitocondrial/fisiologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Estudos de Amostragem
5.
Vet Res ; 49(1): 92, 2018 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-30223898

RESUMO

Caliciviruses in the genus Sapovirus are a significant cause of viral gastroenteritis in humans and animals. However, the mechanism of their entry into cells is not well characterized. Here, we determined the entry mechanism of porcine sapovirus (PSaV) strain Cowden into permissive LLC-PK cells. The inhibition of clathrin-mediated endocytosis using chlorpromazine, siRNAs, and a dominant negative (DN) mutant blocked entry and infection of PSaV Cowden strain, confirming a role for clathrin-mediated internalization. Entry and infection were also inhibited by the cholesterol-sequestering drug methyl-ß-cyclodextrin and was restored by the addition of soluble cholesterol, indicating that cholesterol also contributes to entry and infection of this strain. Furthermore, the inhibition of dynamin GTPase activity by dynasore, siRNA depletion of dynamin II, or overexpression of a DN mutant of dynamin II reduced the entry and infection, suggesting that dynamin mediates the fission and detachment of clathrin- and cholesterol-pits for entry of this strain. In contrast, the inhibition of caveolae-mediated endocytosis using nystatin, siRNAs, or a DN mutant had no inhibitory effect on entry and infection of this strain. It was further determined that cell entry of PSaV Cowden strain required actin rearrangements for vesicle internalization, endosomal trafficking from early to late endosomes through microtubules, and late endosomal acidification for uncoating. We conclude that PSaV strain Cowden is internalized into LLC-PK cells by clathrin- and cholesterol-mediated endocytosis that requires dynamin II and actin rearrangement, and that the uncoating occurs in the acidified late endosomes after trafficking from the early endosomes through microtubules.


Assuntos
Infecções por Caliciviridae/veterinária , Colesterol/fisiologia , Clatrina/fisiologia , Dinamina II/fisiologia , Endocitose , Sapovirus/fisiologia , Doenças dos Suínos/virologia , Animais , Infecções por Caliciviridae/virologia , Gastroenterite/veterinária , Gastroenterite/virologia , Células HeLa , Humanos , Células LLC-PK1 , Suínos
6.
Bioorg Med Chem Lett ; 27(15): 3582-3585, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28587824

RESUMO

Members of a series of 4-aryl-6,7,8,9-tetrahydrobenzo[4,5]thieno[3,2-e][1,2,4]triazolo[4,3-a]pyrimidin-5(4H)-ones (1, Fig. 2) were prepared and tested against representative enteroviruses including Human Coxsackievirus B1 (Cox B1), Human Coxsackievirus B3 (Cox B3), human Poliovirus 3 (PV3), human Rhinovirus 14 (HRV14), human Rhinovirus 21 (HRV 21) and human Rhinovirus 71 (HRV 71). The C-8-tert-butyl group on the tetrahydrobenzene ring in these substances was found to be crucial for their enterovirus activity. One member of this group, 1e, showed single digit micromolar activities (1.6-8.85µM) against a spectrum of viruses screened, and the highest selectivity index (SI) values for Cox B1 (>11.2), for Cox B3 (>11.5), and for PV3 (>51.2), respectively. In contrast, 1p, was the most active analog against the selected HRVs (1.8-2.6µM), and showed the highest selectivity indices among the group of compounds tested. The SI values for 1p were 11.5 for HRV14, 8.4 for HRV21, and 12.1 for HRV71, respectively.


Assuntos
Antivirais/química , Antivirais/farmacologia , Enterovirus/efeitos dos fármacos , Pirimidinonas/química , Pirimidinonas/farmacologia , Triazóis/química , Triazóis/farmacologia , Animais , Antivirais/metabolismo , Enterovirus/fisiologia , Infecções por Enterovirus/tratamento farmacológico , Infecções por Enterovirus/virologia , Células HeLa , Humanos , Microssomos/metabolismo , Pirimidinonas/metabolismo , Ratos , Triazóis/metabolismo , Replicação Viral/efeitos dos fármacos
7.
Virol J ; 13: 99, 2016 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-27296985

RESUMO

BACKGROUND: Enterovirus 71 (EV71) is a major causative agent of hand-foot-mouth disease (HFMD) and also causes severe neurological complications, leading to fatality in young children. However, no effective therapy is currently available for the treatment of this infection. METHODS: We identified small-molecule inhibitors of EV71 from a screen of 968 Food and Drug Administration (FDA)-approved drugs, with which clinical application for EV71-associated diseases would be more feasible, using EV71 subgenomic replicon system. Primary hits were extensively evaluated for their antiviral activities in EV71-infected cells. RESULTS: We identified micafungin, an echinocandin antifungal drug, as a novel inhibitor of EV71. Micafungin potently inhibits the proliferation of EV71 as well as the replication of EV71 replicon in cells with a low micromolar IC50 (~5 µM). The strong antiviral effect of micafungin on EV71 replicon and the result from time-of-addition experiment demonstrated a targeting of micafungin on virion-independent intracellular process(es) during EV71 infection. Moreover, an extensive analysis excluded the involvement of 2C and 3A proteins, IRES-dependent translation, and also that of polyprotein processing in the antiviral effect of micafungin. CONCLUSIONS: Our research revealed a new indication of micafungin as an effective inhibitor of EV71, which is the first case reporting antiviral activity of micafungin, an antifungal drug.


Assuntos
Antivirais/farmacologia , Equinocandinas/farmacologia , Enterovirus Humano A/efeitos dos fármacos , Lipopeptídeos/farmacologia , Animais , Linhagem Celular , Reposicionamento de Medicamentos , Humanos , Micafungina
8.
J Virol ; 88(1): 434-43, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24155402

RESUMO

Echovirus 7 enters polarized Caco-2 intestinal epithelial cells by a clathrin-mediated endocytic process and then moves through the endosomal system before releasing its genome into the cytoplasm. We examined the possible role in virus entry of core components of the autophagy machinery. We found that depletion of Beclin-1, Atg12, Atg14, Atg16, or LC3 with specific small interfering RNAs inhibited echovirus 7 infection upstream of uncoating but had little or no effect on virus attachment to the cell surface. These data indicate that multiple autophagy-related proteins are important for one or more events that occur after the virus has bound its receptor on the cell surface but before RNA is released from the virus capsid. Although we have not determined the mechanism by which each protein contributes to virus entry, we found that stable depletion of Atg16L1 interfered with virus internalization from the cell surface rather than with intracellular trafficking. Autophagy gene products may thus participate in the endocytic process that moves virus into polarized Caco-2 cells.


Assuntos
Autofagia , Enterovirus Humano B/fisiologia , Mucosa Intestinal/virologia , Fusão de Membrana/fisiologia , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Relacionadas à Autofagia , Proteína Beclina-1 , Células CACO-2 , Endossomos/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo
9.
J Virol ; 87(16): 8884-95, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23740983

RESUMO

Enteroviruses invade their hosts by crossing the intestinal epithelium. We have examined the mechanism by which echovirus 1 (EV1) enters polarized intestinal epithelial cells (Caco-2). Virus binds to VLA-2 on the apical cell surface and moves rapidly to early endosomes. Using inhibitory drugs, dominant negative mutants, and small interfering RNAs (siRNAs) to block specific endocytic pathways, we found that virus entry requires dynamin GTPase and membrane cholesterol but is independent of both clathrin- and caveolin-mediated endocytosis. Instead, infection requires factors commonly associated with macropinocytosis, including amiloride-sensitive Na(+)/H(+) exchange, protein kinase C, and C-terminal-binding protein-1 (CtBP1); furthermore, EV1 accumulates rapidly in intracellular vesicles with dextran, a fluid-phase marker. These results suggest a role for macropinocytosis in the process by which EV1 enters polarized cells to initiate infection.


Assuntos
Colesterol/metabolismo , Dinaminas/metabolismo , Enterovirus Humano B/fisiologia , Células Epiteliais/fisiologia , Interações Hospedeiro-Patógeno , Pinocitose , Internalização do Vírus , Oxirredutases do Álcool/metabolismo , Células CACO-2 , Proteínas de Ligação a DNA/metabolismo , Células Epiteliais/virologia , Humanos , Proteína Quinase C/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Vesículas Transportadoras/virologia
10.
Signal Transduct Target Ther ; 9(1): 125, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734691

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a 'highly transmissible respiratory pathogen, leading to severe multi-organ damage. However, knowledge regarding SARS-CoV-2-induced cellular alterations is limited. In this study, we report that SARS-CoV-2 aberrantly elevates mitochondrial bioenergetics and activates the EGFR-mediated cell survival signal cascade during the early stage of viral infection. SARS-CoV-2 causes an increase in mitochondrial transmembrane potential via the SARS-CoV-2 RNA-nucleocapsid cluster, thereby abnormally promoting mitochondrial elongation and the OXPHOS process, followed by enhancing ATP production. Furthermore, SARS-CoV-2 activates the EGFR signal cascade and subsequently induces mitochondrial EGFR trafficking, contributing to abnormal OXPHOS process and viral propagation. Approved EGFR inhibitors remarkably reduce SARS-CoV-2 propagation, among which vandetanib exhibits the highest antiviral efficacy. Treatment of SARS-CoV-2-infected cells with vandetanib decreases SARS-CoV-2-induced EGFR trafficking to the mitochondria and restores SARS-CoV-2-induced aberrant elevation in OXPHOS process and ATP generation, thereby resulting in the reduction of SARS-CoV-2 propagation. Furthermore, oral administration of vandetanib to SARS-CoV-2-infected hACE2 transgenic mice reduces SARS-CoV-2 propagation in lung tissue and mitigates SARS-CoV-2-induced lung inflammation. Vandetanib also exhibits potent antiviral activity against various SARS-CoV-2 variants of concern, including alpha, beta, delta and omicron, in in vitro cell culture experiments. Taken together, our findings provide novel insight into SARS-CoV-2-induced alterations in mitochondrial dynamics and EGFR trafficking during the early stage of viral infection and their roles in robust SARS-CoV-2 propagation, suggesting that EGFR is an attractive host target for combating COVID-19.


Assuntos
COVID-19 , Receptores ErbB , Mitocôndrias , SARS-CoV-2 , Replicação Viral , SARS-CoV-2/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/genética , Mitocôndrias/efeitos dos fármacos , Humanos , Animais , Camundongos , COVID-19/virologia , COVID-19/metabolismo , COVID-19/genética , Receptores ErbB/metabolismo , Receptores ErbB/genética , Replicação Viral/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/genética , Células Vero , Chlorocebus aethiops , Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
11.
Microbiol Spectr ; 10(5): e0237122, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36005818

RESUMO

Diverse severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have emerged since the beginning of the COVID-19 pandemic. We investigated the immunological and pathological peculiarity of the SARS-CoV-2 beta variant of concern (VoC) compared to the ancestral strain. Comparative analysis of phenotype and pathology revealed that the beta VoC induces slower disease progression and a prolonged presymptomatic period in the early stages of SARS-CoV-2 infection but ultimately causes sudden death in the late stages of infection in the K18-hACE2 mouse model. The beta VoC induced enhanced activation of CXCL1/2-CXCR2-NLRP3-IL-1ß signal cascade accelerating neutrophil recruitment and lung pathology in beta variant-infected mice, as evidenced by multiple analyses of SARS-CoV-2-induced inflammatory cytokines and transcriptomes. CCL2 was one of the most highly secreted cytokines in the early stages of infection. Its blockade reduced virus-induced weight loss and delayed mortality. Our study provides a better understanding of the variant characteristics and need for treatment. IMPORTANCE Since the outbreak of COVID-19, diverse SARS-CoV-2 variants have been identified. These variants have different infectivity and transmissibility from the ancestral strains. However, underlying molecular mechanisms have not yet been fully elucidated. In our study, the beta variant showed distinct pathological conditions and cytokine release kinetics from an ancestral strain in a mouse model. It was associated with higher neutrophil recruitment by increased levels of CXCL1/2, CXCR2, and interleukin 1ß (IL-1ß) at a later stage of viral infection. Our study will provide a better understanding of SARS-CoV-2 pathogenesis.


Assuntos
COVID-19 , SARS-CoV-2 , Camundongos , Humanos , Animais , Pandemias , Interleucina-1beta/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR , Citocinas , Modelos Animais de Doenças
12.
Nat Commun ; 13(1): 7675, 2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36509737

RESUMO

Although ocular manifestations are reported in patients with COVID-19, consensus on ocular tropism of SARS-CoV-2 is lacking. Here, we infect K18-hACE2 transgenic mice with SARS-CoV-2 using various routes. We observe ocular manifestation and retinal inflammation with production of pro-inflammatory cytokines in the eyes of intranasally (IN)-infected mice. Intratracheal (IT) infection results in dissemination of the virus from the lungs to the brain and eyes via trigeminal and optic nerves. Ocular and neuronal invasions are confirmed using intracerebral (IC) infection. Notably, the eye-dropped (ED) virus does not cause lung infection and becomes undetectable with time. Ocular and neurotropic distribution of the virus in vivo is evident in fluorescence imaging with an infectious clone of SARS-CoV-2-mCherry. The ocular tropic and neuroinvasive characteristics of SARS-CoV-2 are confirmed in wild-type Syrian hamsters. Our data can improve the understanding regarding viral transmission and clinical characteristics of SARS-CoV-2 and help in improving COVID-19 control procedures.


Assuntos
COVID-19 , SARS-CoV-2 , Cricetinae , Camundongos , Animais , Modelos Animais de Doenças , Camundongos Transgênicos , Pulmão , Mesocricetus , Inflamação
13.
Viruses ; 13(2)2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33546322

RESUMO

Genetic screens using CRISPR/Cas9 have been exploited to discover host-virus interactions. These screens have identified viral dependencies on host proteins during their life cycle and potential antiviral strategies. The acyl-CoA binding domain containing 3 (ACBD3) was identified as an essential host factor for the Coxsackievirus B3 (CVB3) infection. Other groups have also investigated the role of ACBD3 as a host factor for diverse enteroviruses in cultured cells. However, it has not been tested if ACBD3 is required in the animal model of CVB3 infection. Owing to embryonic lethality, conventional knockout mice were not available for in vivo study. As an alternative approach, we used adeno-associated virus (AAV)-mediated CRISPR genome editing to generate mice that lacked ACBD3 within the pancreas, the major target organ for CVB3. Delivery of sgRNAs using self-complementary (sc) AAV8 efficiently induced a loss-of-function mutation in the pancreas of the Cas9 knock-in mice. Loss of ACBD3 in the pancreas resulted in a 100-fold reduction in the CVB3 titer within the pancreas and a noticeable reduction in viral protein expression. These results indicate a crucial function of ACBD3 in CVB3 infection in vivo. AAV-mediated CRISPR genome editing may be applicable to many in vivo studies on the virus-host interaction and identify a novel target for antiviral therapeutics.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Infecções por Coxsackievirus/genética , Dependovirus/genética , Proteínas de Membrana/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Infecções por Coxsackievirus/metabolismo , Infecções por Coxsackievirus/virologia , Dependovirus/metabolismo , Modelos Animais de Doenças , Enterovirus Humano B/fisiologia , Edição de Genes , Técnicas de Inativação de Genes , Humanos , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout
14.
Microorganisms ; 9(3)2021 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-33800763

RESUMO

Zika virus (ZIKV), which is associated with severe diseases in humans, has spread rapidly and globally since its emergence. ZIKV and dengue virus (DENV) are closely related, and antibody-dependent enhancement (ADE) of infection between cocirculating ZIKV and DENV may exacerbate disease. Despite these serious threats, there are currently no approved antiviral drugs against ZIKV and DENV. The NS2B-NS3 viral protease is an attractive antiviral target because it plays a pivotal role in polyprotein cleavage, which is required for viral replication. Thus, we sought to identify novel inhibitors of the NS2B-NS3 protease. To that aim, we performed structure-based virtual screening using 467,000 structurally diverse chemical compounds. Then, a fluorescence-based protease inhibition assay was used to test whether the selected candidates inhibited ZIKV protease activity. Among the 123 candidate inhibitors selected from virtual screening, compound 1 significantly inhibited ZIKV NS2B-NS3 protease activity in vitro. In addition, compound 1 effectively inhibited ZIKV and DENV infection of human cells. Molecular docking analysis suggested that compound 1 binds to the NS2B-NS3 protease of ZIKV and DENV. Thus, compound 1 could be used as a new therapeutic option for the development of more potent antiviral drugs against both ZIKV and DENV, reducing the risks of ADE.

15.
Adv Biol (Weinh) ; 5(4): e2000154, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33852178

RESUMO

Coproduction of multiple proteins at high levels in a single human cell line would be extremely useful for basic research and medical applications. Here, a novel strategy for the stable expression of multiple proteins by integrating the genes into defined transcriptional hotspots in the human genome is presented. As a proof-of-concept, it is shown that EYFP is expressed at similar levels from hotspots and that the EYFP expression increases proportionally with the copy number. It is confirmed that three different fluorescent proteins, encoded by genes integrated at different loci, can be coexpressed at high levels. Further, a stable cell line is generated, producing antigens from different human coronaviruses: MERS-CoV and HCoV-OC43. Antibodies raised against these antigens, which contain human N-glycosylation, show neutralizing activities against both viruses, suggesting that the coexpression system provides a quick and predictable way to produce multiple coronavirus antigens, such as the recent 2019 novel human coronavirus.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Antígenos Virais , Coronavirus Humano OC43 , Expressão Gênica , Coronavírus da Síndrome Respiratória do Oriente Médio , Animais , Antígenos Virais/genética , Antígenos Virais/imunologia , Chlorocebus aethiops , Coronavirus Humano OC43/genética , Coronavirus Humano OC43/imunologia , Feminino , Células HEK293 , Humanos , Camundongos , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Células Vero
16.
Viruses ; 14(1)2021 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-35062259

RESUMO

SARS-CoV-2, like other RNA viruses, has a propensity for genetic evolution owing to the low fidelity of its viral polymerase. Several recent reports have described a series of novel SARS-CoV-2 variants. Some of these have been identified as variants of concern (VOCs), including alpha (B.1.1.7, Clade GRY), beta (B.1.351, Clade GH), gamma (P.1, Clade GR), and delta (B.1.617.2, Clade G). VOCs are likely to have some effect on transmissibility, antibody evasion, and changes in therapeutic or vaccine effectiveness. However, the physiological and virological understanding of these variants remains poor. We demonstrated that these four VOCs exhibited differences in plaque size, thermal stability at physiological temperature, and replication rates. The mean plaque size of beta was the largest, followed by those of gamma, delta, and alpha. Thermal stability, evaluated by measuring infectivity and half-life after prolonged incubation at physiological temperature, was correlated with plaque size in all variants except alpha. However, despite its relatively high thermal stability, alpha's small plaque size resulted in lower replication rates and fewer progeny viruses. Our findings may inform further virological studies of SARS-CoV-2 variant characteristics, VOCs, and variants of interest. These studies are important for the effective management of the COVID-19 pandemic.


Assuntos
SARS-CoV-2/fisiologia , Animais , Chlorocebus aethiops , Humanos , SARS-CoV-2/classificação , Temperatura , Células Vero , Ensaio de Placa Viral , Replicação Viral
17.
Viruses ; 13(8)2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34452503

RESUMO

Recent outbreaks of zoonotic coronaviruses, such as Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), have caused tremendous casualties and great economic shock. Although some repurposed drugs have shown potential therapeutic efficacy in clinical trials, specific therapeutic agents targeting coronaviruses have not yet been developed. During coronavirus replication, a replicase gene cluster, including RNA-dependent RNA polymerase (RdRp), is alternatively translated via a process called -1 programmed ribosomal frameshift (-1 PRF) by an RNA pseudoknot structure encoded in viral RNAs. The coronavirus frameshifting has been identified previously as a target for antiviral therapy. In this study, the frameshifting efficiencies of MERS-CoV, SARS-CoV and SARS-CoV-2 were determined using an in vitro -1 PRF assay system. Our group has searched approximately 9689 small molecules to identify potential -1 PRF inhibitors. Herein, we found that a novel compound, 2-(5-acetylthiophen-2yl)furo[2,3-b]quinoline (KCB261770), inhibits the frameshifting of MERS-CoV and effectively suppresses viral propagation in MERS-CoV-infected cells. The inhibitory effects of 87 derivatives of furo[2,3-b]quinolines were also examined showing less prominent inhibitory effect when compared to compound KCB261770. We demonstrated that KCB261770 inhibits the frameshifting without suppressing cap-dependent translation. Furthermore, this compound was able to inhibit the frameshifting, to some extent, of SARS-CoV and SARS-CoV-2. Therefore, the novel compound 2-(5-acetylthiophen-2yl)furo[2,3-b]quinoline may serve as a promising drug candidate to interfere with pan-coronavirus frameshifting.


Assuntos
Antivirais/farmacologia , Mudança da Fase de Leitura do Gene Ribossômico/efeitos dos fármacos , Coronavírus da Síndrome Respiratória do Oriente Médio/efeitos dos fármacos , Quinolinas/farmacologia , SARS-CoV-2/efeitos dos fármacos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/efeitos dos fármacos , Células A549 , Animais , Linhagem Celular , Mudança da Fase de Leitura do Gene Ribossômico/fisiologia , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Coronavírus da Síndrome Respiratória do Oriente Médio/fisiologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/fisiologia , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Bibliotecas de Moléculas Pequenas , Zoonoses Virais/virologia , Replicação Viral/efeitos dos fármacos
18.
Int J Biol Sci ; 17(14): 3786-3794, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34671199

RESUMO

COVID-19, caused by a novel coronavirus, SARS-CoV-2, poses a serious global threat. It was first reported in 2019 in China and has now dramatically spread across the world. It is crucial to develop therapeutics to mitigate severe disease and viral spread. The receptor-binding domains (RBDs) in the spike protein of SARS-CoV and MERS-CoV have shown anti-viral activity in previous reports suggesting that this domain has high potential for development as therapeutics. To evaluate the potential antiviral activity of recombinant SARS-CoV-2 RBD proteins, we determined the RBD residues of SARS-CoV-2 using a homology search with RBD of SARS-CoV. For efficient expression and purification, the signal peptide of spike protein was identified and used to generate constructs expressing recombinant RBD proteins. Highly purified RBD protein fused with the Fc domain of human IgG showed potent anti-viral efficacy, which was better than that of a protein fused with a histidine tag. Intranasally pre-administrated RBD protein also inhibited the attachment of SARS-COV-2 to mouse lungs. These findings indicate that RBD protein could be used for the prevention and treatment of SARS-CoV-2 infection.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/uso terapêutico , Ligação Viral/efeitos dos fármacos , Administração Intranasal , Sequência de Aminoácidos , Animais , Sítios de Ligação , Chlorocebus aethiops , Feminino , Células HEK293 , Humanos , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana , Domínios Proteicos , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/farmacologia , Proteínas Recombinantes de Fusão/uso terapêutico , Glicoproteína da Espícula de Coronavírus/biossíntese , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/farmacologia , Células Vero
19.
J Microbiol Biotechnol ; 30(12): 1843-1853, 2020 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-33203821

RESUMO

COVID-19, caused by the novel coronavirus SARS-CoV-2, has spread globally and caused serious social and economic problems. The WHO has declared this outbreak a pandemic. Currently, there are no approved vaccines or antiviral drugs that prevent SARS-CoV-2 infection. Drugs already approved for clinical use would be ideal candidates for rapid development as COVID-19 treatments. In this work, we screened 1,473 FDA-approved drugs to identify inhibitors of SARS-CoV-2 infection using cell-based assays. The antiviral activity of each compound was measured based on the immunofluorescent staining of infected cells using anti-dsRNA antibody. Twenty-nine drugs among those tested showed antiviral activity against SARS-CoV-2. We report this new list of inhibitors to quickly provide basic information for consideration in developing potential therapies.


Assuntos
Antivirais/farmacologia , Aprovação de Drogas , Reposicionamento de Medicamentos , SARS-CoV-2/efeitos dos fármacos , Antivirais/toxicidade , Humanos , Estados Unidos , United States Food and Drug Administration
20.
J Microbiol Biotechnol ; 30(8): 1109-1115, 2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32627758

RESUMO

The outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is spreading globally, and the WHO has declared this outbreak a pandemic. Vaccines are an effective way to prevent the rapid spread of COVID-19. Furthermore, the immune response against SARS-CoV-2 infection needs to be understood for the development of an efficient and safe vaccine. Here, we review the current understanding of vaccine targets and the status of vaccine development for COVID-19. We also describe host immune responses to highly pathogenic human coronaviruses in terms of innate and adaptive immunities.


Assuntos
Betacoronavirus/imunologia , Infecções por Coronavirus/imunologia , Desenvolvimento de Medicamentos , Pneumonia Viral/imunologia , Vacinas Virais/imunologia , Imunidade Adaptativa , COVID-19 , Vacinas contra COVID-19 , Infecções por Coronavirus/prevenção & controle , Humanos , Imunidade Inata , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , SARS-CoV-2 , Vacinas Virais/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA