Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 711: 149921, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38603831

RESUMO

Artificial sweeteners, which contain no or few calories, have been widely used in various foods and beverages, and are regarded as safe alternatives to sugar by the Food and Drug Administration. While several studies suggest that artificial sweeteners are not related to cancer development, some research has reported their potential association with the risk of cancers, including hepatocellular carcinoma (HCC). Here, we investigated whether acesulfame potassium (Ace K), a commonly used artificial sweetener, induces immune evasion of HCC cells by upregulating programmed death ligand-1 (PD-L1). Ace K elevated the protein levels of PD-L1 in HCC cells without increasing its mRNA levels. The upregulation of PD-L1 protein levels in HCC cells by Ace K was induced by attenuated autophagic degradation of PD-L1, which was mediated by the Ace K-stimulated ERK1/2-mTORC1 signaling pathway. Ace K-induced upregulation of PD-L1 attenuated T cell-mediated death of HCC cells, thereby promoting immune evasion of HCC cells. In summary, the present study suggests that Ace K promotes HCC progression by upregulating the PD-L1 protein level.


Assuntos
Autofagia , Antígeno B7-H1 , Carcinoma Hepatocelular , Neoplasias Hepáticas , Tiazinas , Regulação para Cima , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Humanos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Autofagia/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Tiazinas/farmacologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Linhagem Celular Tumoral , Edulcorantes/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos
2.
J Biochem Mol Toxicol ; 38(3): e23662, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38372072

RESUMO

Bisphenol A (BPA), an exogenous endocrine-disrupting chemical, is widely used to produce polycarbonate plastics. The widely used BPA has been detected in human urine samples, raising public anxiety about the detrimental effects of BPA on the bladder. In this study, we explored regulatory mechanisms for the adverse effects of BPA in human bladder BdFC and T24 cells. BPA induced extrinsic and intrinsic apoptosis and G2/M cell cycle arrest caused by the ATM-CHK1/CHK2-CDC25c-CDC2 signaling, which ultimately inhibited the growth of human bladder cells. We also found that BPA decreased the binding activity of AP-1 and NF-κB transcription factors in human bladder cells, which inhibited migration and invasion through matrix metallopeptidase-2 and -9 inactivation. Phosphorylation of MAPKs was implicated with BPA-mediated detrimental effects in human bladder cells. Collectively, our results provide a novel explanation for the underlying molecular mechanisms that BPA induces cytotoxicity in human bladder cells.


Assuntos
Compostos Benzidrílicos , Fenóis , Fatores de Transcrição , Bexiga Urinária , Humanos , Fosforilação , Apoptose , Pontos de Checagem da Fase G2 do Ciclo Celular , Linhagem Celular Tumoral , Ciclo Celular
3.
Int J Stem Cells ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38952059

RESUMO

Histone H2B monoubiquitination (H2Bub1) is a dynamic posttranslational modification which are linked to DNA damage and plays a key role in a wide variety of regulatory transcriptional programs. Cancer cells exhibit a variety of epigenetic changes, particularly any aberrant H2Bub1 has frequently been associated with the development of tumors. Nevertheless, our understanding of the mechanisms governing the histone H2B deubiquitination and their associated functions during stem cell differentiation remain only partially understood. In this study, we wished to investigate the role of deubiquitinating enzymes (DUBs) on H2Bub1 regulation during stem cell differentiation. In a search for potential DUBs for H2B monoubiquitination, we identified Usp7, a ubiquitin-specific protease that acts as a negative regulator of H2B ubiquitination during the neuronal differentiation of mouse embryonic carcinoma cells. Loss of function of the Usp7 gene by a CRISPR/Cas9 system during retinoic acid-mediated cell differentiation contributes to the increase in H2Bub1. Furthermore, knockout of the Usp7 gene particularly elevated the expression of neuronal differentiation related genes including astryocyte-specific markers and oligodendrocyte-specific markers. In particular, glial lineage cell-specific transcription factors including oligodendrocyte transcription factor 2, glial fibrillary acidic protein, and SRY-box transcription factor 10 was significantly upregulated during neuronal differentiation. Thus, our findings suggest a novel role of Usp7 in gliogenesis in mouse embryonic carcinoma cells.

4.
PLoS One ; 19(3): e0299558, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38502683

RESUMO

Lake Sinai Virus (LSV) is an emerging pathogen known to affect the honeybee (Apis mellifera). However, its prevalence and genomic characteristics in the Republic of Korea (ROK) remain unexplored. This study aimed to assess the prevalence of and analyze the LSVs by examining 266 honeybee samples from the ROK. Our findings revealed that LSV exhibited the highest infection rate among the pathogens observed in Korean apiaries, particularly during the reported period of severe winter loss (SWL) in A. mellifera apiaries in 2022. Three LSV genotypes- 2, 3, and 4 -were identified using RNA-dependent RNA polymerase gene analysis. Importantly, the infection rates of LSV2 (65.2%) and LSV3 (73.3%) were significantly higher in colonies experiencing SWL than in those experiencing normal winter loss (NWL) (p < 0.03). Furthermore, this study provides the first near-complete genome sequences of the Korean LSV2, LSV3, and LSV4 strains, comprising 5,759, 6,040, and 5,985 nt, respectively. Phylogenetic analysis based on these near-complete genome sequences demonstrated a close relationship between LSVs in the ROK and China. The high LSV infection rate in colonies experiencing a heightened mortality rate during winter suggests that this pathogen might contribute to SWL in ROK. Moreover, the genomic characteristic information on LSVs in this study holds immense potential for epidemiological information and the selection of specific genes suitable for preventing and treating LSV, including the promising utilization of RNA interference medicine in the future.


Assuntos
Vírus de RNA , Vírus , Abelhas , Animais , Filogenia , Prevalência , Vírus de RNA/genética , República da Coreia/epidemiologia
5.
Clin Ther ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38897838

RESUMO

PURPOSE: The study aimed to compare the postoperative nausea and vomiting (PONV) preventive effect of repeated administration of ramosetron with the standard treatment group and compare models to predict the incidence of PONV using machine-learning techniques. METHODS: A total of 261 patients scheduled for breast surgery were analyzed to evaluate the effectiveness of repeated intravenous administration of ramosetron. All patients were administered 0.3 mg ramosetron just before the end of surgery. For the repeated dose of ramosetron group, an additional dose of 0.3 mg was administered at 4, 22, and 46 hours after the end of the surgery. Postoperative nausea, vomiting, and retching were evaluated using the Rhodes Index of Nausea, Vomiting, and Retching at 6, 24, and 48 hours postoperatively. Previously published randomized controlled data were combined with the data of this study to create a new dataset of 1390 patients, and machine-learning-based PONV prediction models (classification tree, random forest, extreme gradient boosting, and neural network) was constructed and compared with the Apfel model. FINDINGS: Fifty patients (38.5%) and 60 patients (45.8%) reported nausea, vomiting, or retching 48 hours postoperatively in the standard and repeated-dose groups, respectively (P = 0.317, χ2 test). Median sensitivity, specificity, and accuracy of the Apfel model analyzed using the training set were 0.815, 0.344, and 0.495, respectively. IMPLICATIONS: The repeated administration of ramosetron did not reduce the incidence of PONV. The Apfel model had high sensitivity, however, its specificity and accuracy were lower than that in machine-learning-based models.

6.
J Pain ; : 104552, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38692398

RESUMO

Bortezomib-induced neuropathic pain (BINP) poses a challenge in multiple myeloma (MM) treatment. Genetic factors play a key role in BINP susceptibility, but research has predominantly focused on Caucasian populations. This research explored novel genetic risk loci and pathways associated with BINP development in Korean MM patients while evaluating the reproducibility of variants from Caucasians. Clinical data and buffy coat samples from 185 MM patients on bortezomib were collected. The cohort was split into discovery and validation cohorts through random stratification of clinical risk factors for BINP. Genome-wide association study was performed on the discovery cohort (n = 74) with Infinium Global Screening Array-24 v3.0 BeadChip (654,027 single nucleotide polymorphism [SNPs]). Relevant biological pathways were identified using the pathway scoring algorithm. The top 20 SNPs were validated in the validation cohort (n = 111). Previously reported SNPs were validated in the entire cohort (n = 185). Pathway analysis of the genome-wide association study results identified 31 relevant pathways, including immune systems and endosomal vacuolar pathways. Among the top 20 SNPs from the discovery cohort, 16 were replicated, which included intronic variants in ASIC2 and SMOC2, recently implicated in nociception, as well as intergenic variants or long noncoding RNAs. None of the 17 previously reported SNPs remained significant in our cohort (rs2274578, P = .085). This study represents the first investigation of novel genetic loci and biological pathways associated with BINP occurrence. Our findings, in conjunction with existing Caucasian studies, expand the understanding of personalized risk prediction and disease mechanisms. PERSPECTIVE: This article is the first to explore novel genetic loci and pathways linked to BINP in Korean MM patients, offering novel insights beyond the existing research focused on Caucasian populations into personalized risk assessment and therapeutic strategies of BINP.

7.
Exp Mol Med ; 56(5): 1123-1136, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38689086

RESUMO

Tumor-associated macrophages (TAMs) are vital contributors to the growth, metastasis, and therapeutic resistance of various cancers, including hepatocellular carcinoma (HCC). However, the exact phenotype of TAMs and the mechanisms underlying their modulation for therapeutic purposes have not been determined. Here, we present compelling evidence that glutamine-derived aspartate in TAMs stimulates spermidine production through the polyamine synthesis pathway, thereby increasing the translation efficiency of HIF-1α via eIF5A hypusination. Consequently, augmented translation of HIF-1α drives TAMs to undergo an increase glycolysis and acquire a metabolic phenotype distinct from that of M2 macrophages. Finally, eIF5A levels in tumor stromal lesions were greater than those in nontumor stromal lesions. Additionally, a higher degree of tumor stromal eIF5A hypusination was significantly associated with a more advanced tumor stage. Taken together, these data highlight the potential of inhibiting hypusinated eIF5A by targeting glutamine metabolism in TAMs, thereby opening a promising avenue for the development of novel therapeutic approaches for HCC.


Assuntos
Ácido Aspártico , Carcinoma Hepatocelular , Fator de Iniciação de Tradução Eucariótico 5A , Glutamina , Subunidade alfa do Fator 1 Induzível por Hipóxia , Neoplasias Hepáticas , Fatores de Iniciação de Peptídeos , Proteínas de Ligação a RNA , Macrófagos Associados a Tumor , Fatores de Iniciação de Peptídeos/metabolismo , Fatores de Iniciação de Peptídeos/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Humanos , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/imunologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Glutamina/metabolismo , Ácido Aspártico/metabolismo , Ácido Aspártico/análogos & derivados , Biossíntese de Proteínas , Animais , Linhagem Celular Tumoral , Camundongos , Glicólise , Lisina/análogos & derivados
8.
ACS Nano ; 18(27): 17557-17569, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38913718

RESUMO

Several fabrication methods have been developed for label-free detection in various fields. However, fabricating high-density and highly ordered nanoscale architectures by using soluble processes remains a challenge. Herein, we report a biosensing platform that integrates deep learning with surface-enhanced Raman scattering (SERS), featuring large-area, close-packed three-dimensional (3D) architectures of molybdenum disulfide (MoS2)-assisted gold nanoparticles (AuNPs) for the on-site screening of coronavirus disease (COVID-19) using human tears. Some AuNPs are spontaneously synthesized without a reducing agent because the electrons induced on the semiconductor surface reduce gold ions when the Fermi level of MoS2 and the gold electrolyte reach equilibrium. With the addition of polyvinylpyrrolidone, a two-dimensional large-area MoS2 layer assisted in the formation of close-packed 3D multistacked AuNP structures, resembling electroless plating. This platform, with a convolutional neural network-based deep learning model, achieved outstanding SERS performance at subterascale levels despite the microlevel irradiation power and millisecond-level acquisition time and accurately assessed susceptibility to COVID-19. These results suggest that our platform has the potential for rapid, low-damage, and high-throughput label-free detection of exceedingly low analyte concentrations.


Assuntos
Aprendizado Profundo , Dissulfetos , Ouro , Nanopartículas Metálicas , Molibdênio , Análise Espectral Raman , Ouro/química , Molibdênio/química , Análise Espectral Raman/métodos , Dissulfetos/química , Nanopartículas Metálicas/química , Humanos , Propriedades de Superfície , COVID-19/virologia , Técnicas Biossensoriais/métodos , SARS-CoV-2/isolamento & purificação , Tamanho da Partícula
9.
Cancer Res ; 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39073839

RESUMO

Cancer cells use multiple mechanisms to evade the effects of glutamine metabolism inhibitors. The pathways that govern responses to alterations in glutamine availability within the tumor may represent therapeutic targets for combinatorial strategies with these inhibitors. Here, we showed that targeting glutamine utilization stimulated Yes-associated protein (YAP) signaling in cancer cells by reducing cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA)-dependent phosphorylation of large tumor suppressor (LATS). Elevated YAP activation induced extracellular matrix (ECM) deposition by increasing secretion of connective tissue growth factor (CTGF) that promoted production of fibronectin and collagen by surrounding fibroblasts. Consequently, inhibiting YAP synergized with inhibition of glutamine utilization to effectively suppress tumor growth in vivo, along with a concurrent decrease in ECM deposition. Blocking ECM remodeling also augmented the tumor suppressive effects of the glutamine utilization inhibitor. Collectively, these data reveal mechanisms by which targeting glutamine utilization increases ECM accumulation and identify potential strategies to reduce ECM levels and increase the efficacy of glutamine metabolism inhibitors.

10.
Cancers (Basel) ; 15(24)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38136298

RESUMO

Nexavant was reported as an alternative to the TLR3 agonist of Poly(I:C) and its derivatives. The physicochemical properties, signaling pathways, anti-cancer effects, and mechanisms of Nexavant were investigated. The distinctive characteristics of Nexavant compared to that of Poly(I:C) were demonstrated by precise quantification, enhanced thermostability, and increased resistance to RNase A. Unlike Poly(I:C), which activates TLR3, RIG-I, and MDA5, Nexavant stimulates signaling through TLR3 and RIG-I but not through MDA5. Compared to Poly(I:C), an intratumoral Nexavant treatment led to a unique immune response, immune cell infiltration, and suppression of tumor growth in various animal cancer models. Nexavant therapy outperformed anti-PD-1 antibody treatment in all the tested models and showed a synergistic effect in combinational therapy, especially in well-defined cold tumor models. The effect was similar to that of nivolumab in a humanized mouse model. Intranasal instillation of Nexavant led to the recruitment of immune cells (NK, CD4+ T, and CD8+ T) to the lungs, suppressing lung metastasis and improving animal survival. Our study highlighted Nexavant's defined nature for clinical use and unique signaling pathways and its potential as a standalone anti-cancer agent or in combination with anti-PD-1 antibodies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA