RESUMO
Tungsten oxide (WO3) is known for its photochromic properties, making it useful for smart windows, displays, and sensors. However, its small bandgap leads to rapid recombination of electron-hole pairs, resulting in poor photochromic performance. This study aims to enhance the photochromic properties of WO3 by synthesizing hexagonal tungsten oxide via hydrothermal synthesis, which increases surface area and internal hydrates. Titanium oxide (TiO2) was adsorbed onto the tungsten oxide to inject additional charges and reduce electron-hole recombination. Additionally, polyvinylpyrrolidone (PVP) was used to improve dispersion in organic solvents, allowing for the fabrication of high-quality films using the doctor blade method. Characterization confirmed the enhanced surface area, crystal structure, and dispersion stability. Reflectance and transmittance measurements demonstrated significant improvements in photochromic properties due to the composite structure. These findings suggest that the introduction of TiO2 and PVP to tungsten oxide effectively enhances its photochromic performance, broadening its applicability in various advanced photochromic applications.
RESUMO
Metal-free carbon-based electrocatalysts for dye-sensitized solar cells (DSSCs) are sufficiently active in Co(II)/Co(III) electrolytes but are not satisfactory in the most commonly used iodide/triiodide (I(-)/I3 (-)) electrolytes. Thus, developing active and stable metal-free electrocatalysts in both electrolytes is one of the most important issues in DSSC research. We report the synthesis of edge-selenated graphene nanoplatelets (SeGnPs) prepared by a simple mechanochemical reaction between graphite and selenium (Se) powders, and their application to the counter electrode (CE) for DSSCs in both I(-)/I3 (-) and Co(II)/Co(III) electrolytes. The edge-selective doping and the preservation of the pristine graphene basal plane in the SeGnPs were confirmed by various analytical techniques, including atomic-resolution transmission electron microscopy. Tested as the DSSC CE in both Co(bpy)3 (2+/3+) (bpy = 2,2'-bipyridine) and I(-)/I3 (-) electrolytes, the SeGnP-CEs exhibited outstanding electrocatalytic performance with ultimately high stability. The SeGnP-CE-based DSSCs displayed a higher photovoltaic performance than did the Pt-CE-based DSSCs in both SM315 sensitizer with Co(bpy)3 (2+/3+) and N719 sensitizer with I(-)/I3 (-) electrolytes. Furthermore, the I3 (-) reduction mechanism, which has not been fully understood in carbon-based CE materials to date, was clarified by an electrochemical kinetics study combined with density functional theory and nonequilibrium Green's function calculations.
Assuntos
Corantes , Grafite/química , Iodo/química , Nanoestruturas/química , Selênio/química , Energia Solar , Algoritmos , Catálise , Cobalto/química , Eletrodos , Eletrólitos , Modelos Moleculares , Modelos Teóricos , OxirreduçãoRESUMO
Three novel carbazole-based molecules have been synthesized and successfully applied as hole-transporting materials (HTMs) of CH3NH3PbI3-based perovskite solar cells. In particular, the perovskite cell with SGT-405, having a three-arm-type structure, exhibited a remarkable photovoltaic conversion efficiency (PCE) of 14.79%.