Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Adv Mater ; 36(14): e2309891, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38146993

RESUMO

With growing sustainability concerns, the need for products that facilitate easy disassembly and reuse has increased. Adhesives, initially designed for bonding, now face demands for selective removal, enabling rapid assembly-disassembly and efficient maintenance across industries. This need is particularly evident in the display industry, with the rise of foldable devices necessitating specialized adhesives. A novel optically clear adhesive (OCA) is presented for foldable display, featuring a unique UV-stimulated selective removal feature. This approach incorporates benzophenone derivatives into the polymer network, facilitating rapid debonding under UV irradiation. A key feature of this method is the adept use of visible-light-driven radical polymerization for OCA film fabrication. This method shows remarkable compatibility with various monomers and exhibits orthogonal reactivity to benzophenone, rendering it ideal for large-scale production. The resultant OCA not only has high transparency and balanced elasticity, along with excellent resistance to repeated folding, but it also exhibits significantly reduced adhesion when exposed to UV irradiation. By merging this customized formulation with strategically integrated UV-responsive elements, an effective solution is offered that enhances manufacturing efficiency and product reliability in the rapidly evolving field of sustainable electronics and displays. This research additionally contributes to eco-friendly device fabrication, aligning with emerging technology demands.

2.
ACS Appl Mater Interfaces ; 15(22): 27166-27172, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37246630

RESUMO

While dimensional change under thermal loading dictates various device failure mechanisms in soft materials, the interplay between microstructures and thermal expansion remains underexplored. Here, we develop a novel method to directly probe the thermal expansion for nanoscale polymer films using an atomic force microscope as well as confining active thermal volume. In a model system, spin-coated poly(methyl methacrylate), we find that the in-plane thermal expansion is enhanced by 20-fold compared to that along the out-of-plane directions in confined dimensions. Our molecular dynamics simulations show that the collective motion of side groups along backbone chains uniquely drives the enhancement of thermal expansion anisotropy of polymers in the nanoscale limit. This work unveils the intimate role of the microstructure of polymer films on its thermal-mechanical interaction, paving a route to judiciously enhance the reliability in a broad range of thin-film devices.

3.
ACS Appl Mater Interfaces ; 14(51): 56623-56634, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36524808

RESUMO

Silk protein is being increasingly introduced as a prospective material for biomedical devices. However, a limited locus to intervene in nature-oriented silk protein makes it challenging to implement on-demand functions to silk. Here, we report how polymorphic transitions are related with molecular structures of artificially synthesized silk protein and design principles to construct a green-lithographic and high-performative protein resist. The repetition number and ratio of two major building blocks in synthesized silk protein are essential to determine the size and content of ß-sheet crystallites, and radicals resulting from tyrosine cleavages by the 193 nm laser irradiation induce the ß-sheet to α-helix transition. Synthesized silk is designed to exclusively comprise homogeneous building blocks and exhibit high crystallization and tyrosine-richness, thus constituting an excellent basis for developing a high-performance deep-UV photoresist. Additionally, our findings can be conjugated to design an electron-beam resist governed by the different irradiation-protein interaction mechanisms. All synthesis and lithography processes are fully water-based, promising green lithography. Using the engineered silk, a nanopatterned planar color filter showing the reduced angle dependence can be obtained. Our study provides insights into the industrial scale production of silk protein with on-demand functions.


Assuntos
Seda , Seda/química , Estrutura Molecular , Conformação Proteica em Folha beta , Conformação Proteica em alfa-Hélice
4.
Adv Mater ; 33(22): e2008434, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33860580

RESUMO

Cracks are typically associated with the failure of materials. However, cracks can also be used to create periodic patterns on the surfaces of materials, as observed in the skin of crocodiles and elephants. In synthetic materials, surface patterns are critical to micro- and nanoscale fabrication processes. Here, a strategy is presented that enables freely programmable patterns of cracks on the surface of a polymer and then uses these cracks to pattern other materials. Cracks form during deposition of a thin film metal on a liquid crystal polymer network (LCN) and follow the spatially patterned molecular order of the polymer. These patterned sub-micrometer scale cracks have an order parameter of 0.98 ± 0.02 and form readily over centimeter-scale areas on the flexible substrates. The patterning of the LCN enables cracks that turn corners, spiral azimuthally, or radiate from a point. Conductive inks can be filled into these oriented cracks, resulting in flexible, anisotropic, and transparent conductors. This materials-based processing approach to patterning cracks enables unprecedented control of the orientation, length, width, and depth of the cracks without costly lithography methods. This approach promises new architectures of electronics, sensors, fluidics, optics, and other devices with micro- and nanoscale features.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA