Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 246
Filtrar
1.
Molecules ; 29(18)2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39339342

RESUMO

Microgreens have recently gained popularity owing to their reliable economic and nutritional value. This study aimed to increase the quality of microgreen broccoli via treatment with different concentrations (1%, IPB-1; 3%, IPB-3; 5%, IPB-5; or 7%, IPB-7 w/v) of illite-a natural mineral powder. The results showed that the illite treatments considerably increased the content of mineral elements, such as Ca, P, and K; of vitamin C; and of free amino acids; and also increased the total weight of the broccoli sprouts. The content of sulforaphane, a bioactive compound, also increased by up to 47% with illite treatment, with the highest increase being in the IPB-5 group. However, several of the parameters were lower in the IPB-7 group. Aromatic compounds were categorized by functional groups such as hydrocarbons which numbered 36, 30, 34, 28, and 30 in the control, IPB-1, IPB-3, IPB-5, and IPB-7 groups, respectively. We found 16, 15, 15, 13, and 14 sulfides, including dimethyl sulfide, in the control, IPB-1, IPB-3, IPB-5, and IPB-7 groups, respectively. Additionally, aldehydes, comprising seven compounds, were detected in the IPB-1, IPB-3, IPB-5, and IPB-7 groups. Illite treatment significantly increased the activities of antioxidants such as DPPH and the polyphenol content of the microgreens. These results indicate a potential role for appropriate illite doses in microgreen treatment to address multinutrient deficiencies and to increase the quality of microgreen vegetables.


Assuntos
Antioxidantes , Brassica , Brassica/química , Brassica/crescimento & desenvolvimento , Antioxidantes/farmacologia , Antioxidantes/química , Sulfóxidos , Minerais/análise , Isotiocianatos/farmacologia , Isotiocianatos/química , Ácido Ascórbico/análise , Plântula/química , Plântula/crescimento & desenvolvimento , Sulfetos/farmacologia , Sulfetos/análise , Sulfetos/química
2.
Small ; 19(44): e2303432, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37394708

RESUMO

In the quest for materials sustainability for grid-scale applications, graphene quantum dot (GQD), prepared via eco-efficient processes, is one of the promising graphitic-organic matters that have the potential to provide greener solutions for replacing metal-based battery electrodes. However, the utilization of GQDs as electroactive materials has been limited; their redox behaviors associated with the electronic bandgap property from the sp2 carbon subdomains, surrounded by functional groups, are yet to be understood. Here, the experimental realization of a subdomained GQD-based anode with stable cyclability over 1000 cycles, combined with theoretical calculations, enables a better understanding of the decisive impact of controlled redox site distributions on battery performance. The GQDs are further employed in cathode as a platform for full utilization of inherent electrochemical activity of bio-inspired redox-active organic motifs, phenoxazine. Using the GQD-derived anode and cathode, an all-GQD battery achieves a high energy density of 290 Wh kgcathode -1 (160 Wh kgcathode+anode -1 ), demonstrating an effective way to improve reaction reversibility and energy density of sustainable, metal-free batteries.

3.
Stroke ; 53(7): 2377-2388, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35656826

RESUMO

BACKGROUND: Mononuclear phagocytes, including monocyte-derived macrophages (MDMs) and microglia, contribute to infarct development as well as tissue repair in the postischemic brain. Here, we identify the origin and function of MDMs in the brain during poststroke repair processes. METHODS: Adult mice were subjected to transient middle cerebral artery occlusion. Longitudinal brain atrophy and secondary degeneration were evaluated during acute to recovery phases of stroke. Adoptive transfer of GFP+ splenocytes into asplenic mice was used to distinguish MDMs from resident microglia. Fluorescence beads were injected into stroked animals to examine phagocytic function. RESULTS: Progressive atrophy and neuronal degeneration in remote regions were observed in chronic stroke, which also was accompanied by MDM infiltration into the ipsilateral hemisphere. Compared with microglia, MDMs had significantly higher phagocytic activity. MDM trafficking and phagocytosis was spatiotemporally regulated with acute and prolonged infiltration into infarcted tissue, as well as delayed entry in remote areas such as the thalamus and substantia nigra. CONCLUSIONS: The stepwise and long-lasting involvement of MDMs at multiple poststroke stages shows that MDMs have a role in progressive stroke-induced injury and repair processes. These findings suggest that manipulating monocyte entry at different stroke stages may be an effective immune-based strategy to limit injury propagation in chronic stroke.


Assuntos
Monócitos , Acidente Vascular Cerebral , Animais , Atrofia/patologia , Dano Encefálico Crônico , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Microglia , Fagocitose
4.
J Neuroinflammation ; 19(1): 190, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35850727

RESUMO

BACKGROUND: Monocyte-derived macrophages (MDMs) and microglia elicit neural inflammation and clear debris for subsequent tissue repair and remodeling. The role of infiltrating MDMs in the injured brain, however, has been controversial due to overlapping antigen expression with microglia. In this study, we define the origin and function of MDMs in cerebral ischemia. METHODS: Using adoptive transfer of GFP+ splenocytes into adult asplenic mice subjected to transient middle cerebral artery occlusion, we compared the role of CD11b+/CD45+/NK1.1-/Ly6G- MDMs and microglia in the ischemic brain. The phagocytic activities of MDMs and microglia were measured by the uptake of fluorescent beads both in vivo with mice infused with GFP+ splenocytes and ex vivo with cultures of isolated brain immune cells. RESULTS: Stroke induced an infiltration of MDMs [GFP+] into the ipsilateral hemisphere at acute (3 days) and sub-acute phases (7 days) of post-stroke. At 7 days, the infiltrating MDMs contained both CD45High and CD45Low subsets. The CD45High MDMs in the injured hemisphere exhibited a significantly higher proliferation capacity (Ki-67 expression levels) as well as higher expression levels of CD11c when compared to CD45Low MDMs. The CD45High and CD45Low MDM subsets in the injured hemisphere were approximately equal populations, indicating that CD45High MDMs infiltrating the ischemic brain changes their phenotype to CD45Low microglia-like phenotype. Studies with fluorescent beads reveal high levels of MDM phagocytic activity in the post-stroke brain, but this phagocytic activity was exclusive to post-ischemic brain tissue and was not detected in circulating monocytes. By contrast, CD45Low microglia-like cells had low levels of phagocytic activity when compared to CD45High cells. Both in vivo and ex vivo studies also show that the phagocytic activity in CD45High MDMs is associated with an increase in the CD45Low/CD45High ratio, indicating that phagocytosis promotes MDM phenotype conversion. CONCLUSIONS: This study demonstrates that MDMs are the predominant phagocytes in the post-ischemic brain, with the CD45High subset having the highest phagocytic activity levels. Upon phagocytosis, CD45High MDMs in the post-ischemic brain adopt a CD45Low phenotype that is microglia-like. Together, these studies reveal key roles for MDMs and their phagocytic function in tissue repair and remodeling following cerebral ischemia.


Assuntos
Isquemia Encefálica , Acidente Vascular Cerebral , Animais , Encéfalo/metabolismo , Isquemia Encefálica/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Monócitos/metabolismo , Fagocitose , Fenótipo , Acidente Vascular Cerebral/metabolismo
5.
Small ; 18(24): e2201134, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35506524

RESUMO

All-solid-state thin-film batteries (ASSTFBs) are promising next-generation battery systems, but critical challenges such as low-energy-density remain. The low-energy-density might persist with low-voltage cathode material; hence, high-voltage cathode material development is required. While LiNi0.5 Mn1.5 O4 (LNM) has been considered a promising high-voltage cathode material. This study investigates the electrochemical properties of LNM thin films based on the correlation between the ordering of cations (Ni and Mn) and oxygen vacancies (VO ). The authors find that the cations' order changes from a disordered structure to an ordered structure with an increased oxygen flow rate during deposition. The optimized LNM fabricated using a 60:40 ratio of Ar to O2 exhibits the highest rate capability (321.4 mAh cm-3 @ 20 C) and most prolonged cycle performance for 500 cycles. The role of VO within the LNM structure and the lower activation energy of ordered LNM compared to disordered LNM through first-principles density functional theory calculations is elucidated. The superior electrochemical performance (276.9 mAh cm-3 @ 0.5 C) and high cyclic performance (at 93.9%, 500 cycles) are corroborated by demonstrating flexible ASSTFB cells using LiPON solid-state electrolyte and thin-film Li anode. This work paves the way for future research on the fabrication of high-performance flexible ASSTFBs.

6.
Chem Eng J ; 444: 136460, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35463870

RESUMO

Most respiratory masks are made of fabrics, which only capture the infectious virus carriers into the matrix. However, these contagious viruses stay active for a long duration (∼7 days) within the fabric matrix possibly inducing post-contact transmissions. Moreover, conventional masks are vulnerable to bacterial growth with prolonged exposure to exhaled breaths. Herein, we combined violacein, a naturally-occurring antimicrobial agent, with porous nanofiber membranes to develop a series of functional filters that autonomously sterilizes viruses and bacteria. The violacein-embedded membrane inactivates viruses within 4 h (99.532 % reduction for influenza and 99.999 % for human coronavirus) and bacteria within 2 h (75.5 % reduction). Besides, its nanofiber structure physically filters out the nanoscale (<0.8 µm) and micron-scale (0.8 µm - 3 µm) particulates, providing high filtration efficiencies (99.7 % and 100 % for PM 1.0 and PM 10, respectively) with long-term stability (for 25 days). In addition, violacein provides additional UV-resistant property, which protects the skin from sunlight. The violacein-embedded membrane not only proved the sterile efficacy of microbe extracted pigments for biomedical products but also provided insights to advance the personal protective equipment (PPE) to fight against contagious pathogens.

7.
Int J Mol Sci ; 23(16)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36012179

RESUMO

This study examined the efficiency of fungal strain (Cunninghamella bertholletiae) isolated from the rhizosphere of Solanum lycopersicum to reduce symptoms of salinity, drought and heavy metal stresses in tomato plants. In vitro evaluation of C. bertholletiae demonstrated its ability to produce indole-3-Acetic Acid (IAA), ammonia and tolerate varied abiotic stresses on solid media. Tomato plants at 33 days' old, inoculated with or without C. bertholletiae, were treated with 1.5% sodium chloride, 25% polyethylene glycol, 3 mM cadmium and 3 mM lead for 10 days, and the impact of C. bertholletiae on plant performance was investigated. Inoculation with C. bertholletiae enhanced plant biomass and growth attributes in stressed plants. In addition, C. bertholletiae modulated the physiochemical apparatus of stressed plants by raising chlorophyll, carotenoid, glucose, fructose, and sucrose contents, and reducing hydrogen peroxide, protein, lipid metabolism, amino acid, antioxidant activities, and abscisic acid. Gene expression analysis showed enhanced expression of SlCDF3 and SlICS genes and reduced expression of SlACCase, SlAOS, SlGRAS6, SlRBOHD, SlRING1, SlTAF1, and SlZH13 genes following C. bertholletiae application. In conclusion, our study supports the potential of C. bertholletiae as a biofertilizer to reduce plant damage, improve crop endurance and remediation under stress conditions.


Assuntos
Cunninghamella , Solanum lycopersicum , Solanum lycopersicum/genética , Rizosfera , Estresse Fisiológico/genética
8.
Molecules ; 27(4)2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35208942

RESUMO

Soybean sprouts, a nutritional food product, can contribute to food security because they can be grown within a week and do not require sophisticated technology. The yield and quality of soybean sprouts are influenced by various factors, including seed priming and growing conditions. The objective of this study was to investigate the effects of seed soaking in different concentrations of illite, a clay mineral, on the yield and quality of soybean sprouts. Soybean seeds soaked in five concentrations (0.5%, 1%, 3%, 5%, and 10%, w/v) of illite or tap water for 8 h were named IP-0.5, IP-1, IP3, IP-5, IP-10, and control, respectively. The highest sprout yield was found in IP-3, followed by IP-1, and IP-5, which had 11.1%, 8.8%, and 7.4% increments, respectively, compared to the control. The content of vitamin C, mineral element, isoflavone, total polyphenol, and total flavonoid was higher in many of the illite-treated soybean sprouts than in the control. The overall results indicated that pre-soaking soybean seeds in lower concentrations (0.5-3%, w/v) of illite could be helpful to enhance the yield and nutritional value of soybean sprouts in an easy and inexpensive way.


Assuntos
Análise de Alimentos , Glycine max , Minerais/farmacologia , Valor Nutritivo , Plântula/química , Sementes/química , Humanos , Plântula/crescimento & desenvolvimento , Sementes/metabolismo
9.
Stroke ; 52(8): 2637-2648, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34192895

RESUMO

Background and Purpose: Brain edema is an important underlying pathology in acute stroke, especially when comorbidities are present. VEGF (Vascular endothelial growth factor) signaling is implicated in edema. This study investigated whether obesity impacts VEGF signaling and brain edema, as well as whether VEGF inhibition alters stroke outcome in obese subjects. Methods: High-fat diet-induced obese mice were subjected to a transient middle cerebral artery occlusion. VEGF-A and VEGFR2 (receptor) expression, infarct volume, and swelling were measured 3 days post-middle cerebral artery occlusion. To validate the effect of an anti-VEGF strategy, we used aflibercept, a fusion protein that has a VEGF-binding domain and acts as a decoy receptor, in human umbilical vein endothelial cells stimulated with rVEGF (recombinant VEGF; 50 ng/mL) for permeability and tube formation. In vivo, aflibercept (10 mg/kg) or IgG control was administered in obese mice 3 hours after transient 30 minutes middle cerebral artery occlusion. Blood-brain barrier integrity was assessed by IgG staining and dextran extravasation in the postischemic brain. A separate cohort of nonobese (lean) mice was subjected to 40 minutes middle cerebral artery occlusion to test the effect of aflibercept on malignant infarction. Results: Compared with lean mice, obese mice had increased mortality, infarct volume, swelling, and blood-brain barrier disruption. These outcomes were also associated with increased VEGF-A and VEGFR2 expression. Aflibercept reduced VEGF-A-stimulated permeability and tube formation in human umbilical vein endothelial cells. Compared with the IgG-treated controls, mice treated with aflibercept had reduced mortality rates (40% versus 17%), hemorrhagic transformation (43% versus 27%), and brain swelling (28% versus 18%), although the infarct size was similar. In nonobese mice with large stroke, aflibercept neither improved nor exacerbated stroke outcomes. Conclusions: The study demonstrates that aflibercept selectively attenuates stroke-induced brain edema and vascular permeability in obese mice. These findings suggest the repurposing of aflibercept to reduce obesity-enhanced brain edema in acute stroke.


Assuntos
Edema Encefálico/tratamento farmacológico , Permeabilidade Capilar/efeitos dos fármacos , Obesidade/tratamento farmacológico , Receptores de Fatores de Crescimento do Endotélio Vascular/uso terapêutico , Proteínas Recombinantes de Fusão/uso terapêutico , Acidente Vascular Cerebral/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular/biossíntese , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Animais , Biomarcadores/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Edema Encefálico/metabolismo , Permeabilidade Capilar/fisiologia , Dieta Hiperlipídica/efeitos adversos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Acidente Vascular Cerebral/metabolismo
10.
Small ; 17(35): e2102532, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34302441

RESUMO

For the proliferation of the supercapacitor technology, it is essential to attain superior areal and volumetric performance. Nevertheless, maintaining stable areal/volumetric capacitance and rate capability, especially for thick electrodes, remains a fundamental challenge. Here, for the first time, a rationally designed porous monolithic electrode is reported with high thickness of 800 µm (46.74 mg cm-2 , with high areal mass loading of NiCo2 S4 6.9 mg cm-2 ) in which redox-active Ag nanoparticles and NiCo2 S4 nanosheets are sequentially decorated on highly conductive wood-derived carbon (WC) substrates. The hierarchically assembled WC@Ag@NiCo2 S4 electrode exhibits outstanding areal capacitance of 6.09 F cm-2 and long-term stability of 84.5% up to 10 000 cycles, as well as exceptional rate capability at 50 mA cm-2 . The asymmetric cell with an anode of WC@Ag and a cathode of WC@Ag@NiCo2 S4 delivers areal/volumetric energy density of 0.59 mWh cm-2 /3.93 mWh cm-3 , which is much-improved performance compared to those of most reported thick electrodes at the same scale. Theoretical calculations verify that the enhanced performance could be attributed to the decreased adsorption energy of OH- and the down-shifted d-band of Ag atoms, which can accelerate the electron transport and ion transfer.

11.
Int J Mol Sci ; 22(18)2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34576163

RESUMO

Osteopontin (OPN), a phosphorylated glycoprotein, is induced in response to tissue damage and inflammation in various organs, including the brain. In our previous studies, we reported the robust neuroprotective effects of the icosamer OPN peptide OPNpt20, containing arginine-glycine-aspartic acid (RGD) and serine-leucine-alanine-tyrosine (SLAY) motifs, in an animal model of transient focal ischemia and demonstrated that its anti-inflammatory, pro-angiogenic, and phagocytosis inducing functions are responsible for the neuroprotective effects. In the present study, we truncated OPNpt20 to 13 or 7 amino acid peptides containing RGD (R) and/or SLAY (S) motifs (OPNpt13RS, OPNpt7R, OPNpt7RS, and OPNpt7S), and their neuroprotective efficacy was examined in a rat middle cerebral artery occlusion (MCAO) model. Intranasal administration of all four peptides significantly reduced infarct volume; OPNpt7R (VPNGRGD), the 7-amino-acid peptide containing an RGD motif, was determined to be the most potent, with efficacy comparable to that of OPNpt20. Additionally, sensory-motor functional deficits of OPNpt7R-administered MCAO animals were significantly improved, as indicated by the modified neurological severity scores and rotarod test. Notably, the expression of M1 markers was suppressed, whereas that of M2 markers (Arginase 1, CD206, and VEGF) was significantly enhanced in OPNpt7R-treated primary microglia cultures. Inflammation resolution by OPNpt7R was further confirmed in MCAO animals, in which upregulation of anti-inflammatory cytokines (Arg1, IL-10, IL-4, and CD36) and enhanced efferocytosis were detected. Moreover, studies using three mutant peptides (OPNpt7R-RAA or OPNpt7R-RAD, where RGD was replaced with RAA or RAD, respectively, and OPNpt7R-sc containing scrambled sequences) revealed that the RGD motif plays a vital role in conferring neuroprotection. In conclusion, the RGD-containing OPN heptamer OPNpt7R exhibits neuroprotective effects in the post-ischemic brain by suppressing M1 markers and augmenting M2 polarization of microglia and the RGD motif plays a critical role in these activities.


Assuntos
Microglia/metabolismo , Neuroproteção/fisiologia , Osteopontina/metabolismo , Animais , Humanos , Infarto da Artéria Cerebral Média/metabolismo , Neuroproteção/genética , Ratos , Acidente Vascular Cerebral/metabolismo
12.
Int J Mol Sci ; 22(20)2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34681604

RESUMO

The present investigation aims to perceive the effect of exogenous ampelopsin treatment on salinity and heavy metal damaged soybean seedlings (Glycine max L.) in terms of physiochemical and molecular responses. Screening of numerous ampelopsin concentrations (0, 0.1, 1, 5, 10 and 25 µM) on soybean seedling growth indicated that the 1 µM concentration displayed an increase in agronomic traits. The study also determined how ampelopsin application could recover salinity and heavy metal damaged plants. Soybean seedlings were irrigated with water, 1.5% NaCl or 3 mM chosen heavy metals for 12 days. Our results showed that the application of ampelopsin raised survival of the 45-day old salinity and heavy metal stressed soybean plants. The ampelopsin treated plants sustained high chlorophyll, protein, amino acid, fatty acid, salicylic acid, sugar, antioxidant activities and proline contents, and displayed low hydrogen peroxide, lipid metabolism, and abscisic acid contents under unfavorable status. A gene expression survey revealed that ampelopsin application led to the improved expression of GmNAC109, GmFDL19, GmFAD3, GmAPX, GmWRKY12, GmWRKY142, and GmSAP16 genes, and reduced the expression of the GmERF75 gene. This study suggests irrigation with ampelopsin can alleviate plant damage and improve plant yield under stress conditions, especially those including salinity and heavy metals.


Assuntos
Flavonoides/farmacologia , Glycine max/metabolismo , Plântula/efeitos dos fármacos , Estresse Fisiológico , Ácido Abscísico/metabolismo , Antioxidantes/química , Antioxidantes/metabolismo , Carotenoides/metabolismo , Clorofila/metabolismo , Metais Pesados/toxicidade , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Cloreto de Sódio/farmacologia , Proteínas de Soja/genética , Proteínas de Soja/metabolismo , Glycine max/crescimento & desenvolvimento , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
13.
Entropy (Basel) ; 23(2)2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33672600

RESUMO

Multiscale sample entropy analysis has been developed to quantify the complexity and the predictability of a time series, originally developed for physiological time series. In this study, the analysis was applied to the turbulence data. We measured time series data for the velocity fluctuation, in either the longitudinal or transverse direction, of turbulent soap film flows at various locations. The research was to assess the feasibility of using the entropy analysis to qualitatively characterize turbulence, without using any conventional energetic analysis of turbulence. The study showed that the application of the entropy analysis to the turbulence data is promising. From the analysis, we successfully captured two important features of the turbulent soap films. It is indicated that the turbulence is anisotropic from the directional disparity. In addition, we observed that the most unpredictable time scale increases with the downstream distance, which is an indication of the decaying turbulence.

14.
Anal Chem ; 92(1): 957-965, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31822064

RESUMO

Conventional graphene oxide (GO)-based gas membranes, having a narrow pore-size range of less than 0.3 nm, exhibit limited gas molecular permeability because of the kinetic diameters of most volatile organic and sulfur compound (VOCs/VSCs) molecules being larger than 0.3 nm. Here, we employ GO nanosheets (NSs) with a tunable pore-size distribution as a molecular sieving layer on two-dimensional (2D) metal oxide NSs-based gas sensors, i.e., PdO-sensitized WO3 NSs to boost selectivity toward specific gas species. The pore size, surface area, and pore density of GO NSs were simply manipulated by controlling H2O2 concentration. In addition, the pore size-tuned GO NSs were coated on cellulose filtering paper as a free-standing nanoporous membrane. Holey GO membrane showed a highly selective H2S permeability characteristic, exhibiting superior cross-selectivity to CH3COCH3 (0.46 nm), C2H5OH (0.45 nm), and C7H8 (0.59 nm) with larger kinetic diameters compared with H2S (0.36 nm). Such pore-size-tuned GO nanoporous layer is scalable and robust, highlighting a great promise for designing low cost and highly efficient gas-permeable membrane for outstanding selective gas sensing platform.

15.
Biochem Biophys Res Commun ; 524(2): 371-377, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32005517

RESUMO

Osteopontin (OPN) is a phosphorylated glycoprotein expressed in various tissues, including brain, and mediates a wide range of cellular activities. In our previous studies, we reported recombinant OPN and RGD and SLAY-containing OPN-peptide icosamer (OPNpt20) exhibited robust neuroprotective activities in an animal model of transient focal ischemia, and attributed these effects to the anti-inflammatory, pro-angiogenic, and phagocytic functions of OPNpt20. In the present study, we truncated OPNpt20 to 13 or 7 amino acid peptides containing RGD (R) and/or SLAY (S) motif (OPNpt13RS, OPNpt7R, OPNpt7RS, and OPNpt7S) and their cell motility and migration inducing activities were examined in BV2 cells (a microglia cell line). All four peptides significantly enhanced BV2 cell motility and migration, but OPNpt7R, an RGD-containing 7-amino-acid OPN peptide (VPNGRGD), was found to be most potent and its potency was comparable to OPNpt20. Phagocytic activity and F-actin polymerization were also significantly enhanced in OPNpt7R-treated BV2 cells. Importantly, studies using two mutant peptides (OPNpt7R-RAA and OPNpt7R-RAD, wherein RGD in OPNpt7R was replaced with RAA or RAD, respectively) revealed that all these effects of OPNpt7R, motility, migration, F-actin polymerization, and phagocytosis induction, were RGD-dependent. Furthermore, the Erk, Fak, and Akt signaling pathways appeared to be involved in the induction of phagocytic activity by OPNpt7R. Co-treating cells with OPNpt7R and D98059 or wortmannin (pharmacological inhibitors of Erk and Akt, respectively) significantly suppressed OPNpt7R-mediated phagocytosis induction. These results indicate the RGD-containing OPN heptamer OPNpt7R triggers microglial motility, migration, and phagocytic activity and that the RGD motif plays a critical role in these activities.


Assuntos
Microglia/efeitos dos fármacos , Oligopeptídeos/farmacologia , Osteopontina/farmacologia , Fagocitose/efeitos dos fármacos , Animais , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Camundongos , Microglia/imunologia , Oligopeptídeos/química , Osteopontina/química
16.
Molecules ; 25(17)2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32854419

RESUMO

Soybean sprouts are one of the most inexpensive and nutritious food items that can be easily grown year-round. Several studies have been conducted to increase their yield and nutritional values. This study was carried out to examine the effects of Pu-erh tea extracts on the production and nutrients content of soybean sprouts. Soybean seeds were soaked in 1%, 2%, or 3% (w/v) tea extracts, or tap water, before keeping for sprout cultivation; the sprout samples were named PE-1, PE-2, PE-3, and the control, respectively. The sprout yields were increased by up to 17% in PE-2 and PE-3 than in the control. The vitamin C, total free amino acid, total mineral, total isoflavone, total polyphenol, and flavonoid contents as well as the antioxidant potentials of the tea extract-treated sprouts were higher than those of the control. The results indicated that pre-soaking soybean seeds in 2% Pu-erh tea extracts could offer an easy, inexpensive, and efficient way to improve the yield and nutritional value of soybean sprouts.


Assuntos
Antioxidantes , Glycine max/crescimento & desenvolvimento , Valor Nutritivo , Extratos Vegetais , Plântula/crescimento & desenvolvimento , Chá/química , Antioxidantes/química , Antioxidantes/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia
17.
Small ; 15(48): e1901529, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31259486

RESUMO

Flash photothermal treatment via Xenon lamp with a broad wavelength spectrum can effectively remove oxygen functionalities and restore sp2 domains at graphitic carbon materials. The chemical composition and relevant structure formation of flash reduced graphene oxide liquid crystal (GOLC) fibers are investigated in accordance with flash irradiation conditions. Owing to the spatial controllability of reduction level via anisotropic flash irradiation, the mechanical properties and electrical conductivity of graphene fibers can be delicately counterbalanced to attain desired properties. High sensitivity humidity sensors can be fabricated from the flash reduced fibers demonstrating notably higher sensitivity over the thermally reduced counterparts. This ultrafast flash reduction holds great promise for multidimensional macroscopic GO based structures, enabling a wide range of potential applications, including textile electronics and wearable sensors.

18.
Anal Chem ; 90(15): 8769-8775, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-29790330

RESUMO

Lead(II) acetate [Pb(Ac)2] reacts with hydrogen sulfide to form colored brownish precipitates of lead sulfide. Thus far, in order to detect leakage of H2S gas in industrial sectors, Pb(Ac)2 has been used as an indicator in the form of test papers with a detection limit only as low as 5 ppm. Diagnosis of halitosis by exhaled breath needs sensors able to detect down to 1 ppm of H2S gas. In this work, high surface area and porous Pb(Ac)2 anchored nanofibers (NFs) that overcome limitations of the conventional Pb(Ac)2-based H2S sensor are successfully achieved. First, lead(II) acetate, which melts at 75 °C, and polyacrylonitrile (PAN) polymer are mixed and stirred in dimethylformamide (DMF) solvent at 85 °C, enabling uniform dispersion of fine liquid droplets in the electrospinning solution. During the subsequent electrospinning, Pb(Ac)2 anchored NFs are obtained, providing an ideal nanostructure with high thermal stability against particle aggregation, numerous reactions sites, and enhanced diffusion of H2S into the three-dimensional (3D)-networked NF web. This newly obtained sensing material can detect down to 400 ppb of H2S at a relative humidity of 90%, exhibiting high potential feasibility as a high-performance colorimetric sensor platform for diagnosis of halitosis.


Assuntos
Colorimetria/métodos , Sulfeto de Hidrogênio/análise , Nanofibras/química , Compostos Organometálicos/química , Resinas Acrílicas/química , Testes Respiratórios/métodos , Halitose/diagnóstico , Humanos , Limite de Detecção , Nanofibras/ultraestrutura , Porosidade
19.
Anal Chem ; 90(15): 9338-9346, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-29976051

RESUMO

A new type of chemiresistor, the impedance-transduced chemiresistor (ITCR), is described for the rapid analysis of glucose. The ITCR exploits porous, high surface area, fluorine-doped carbon nanofibers prepared by electrospinning of fluorinated polymer nanofibers followed by pyrolysis. These nanofibers are functionalized with a boronic acid receptor and stabilized by Nafion to form the ITCR channel for glucose detection. The recognition and binding of glucose by the ITCR is detected by measuring its electrical impedance at a single frequency. The analysis frequency is selected by measuring the signal-to-noise ( S/ N) for glucose detection across 5 orders of magnitude, evaluating both the imaginary and real components of the complex impedance. On the basis of this analysis, an optimal frequency of 13 kHz is selected for glucose detection, yielding an S/ N ratio of 60-100 for [glucose] = 5 mM using the change in the total impedance, Δ Z. The resulting ITCR glucose sensor shows a rapid analysis time (<8 s), low coefficient of variation for a series of sensors (<10%), an analysis range of 50 µM to 5 mM, and excellent specificity versus fructose, ascorbic acid, and uric acid. These metrics for the ITCR are obtained using a sample size as small as 5 µL.


Assuntos
Glicemia/análise , Carbono/química , Impedância Elétrica , Glucose/análise , Técnicas Biossensoriais , Técnicas Eletroquímicas , Microscopia Eletrônica/métodos , Porosidade , Estudo de Prova de Conceito , Análise Espectral/métodos , Propriedades de Superfície , Lágrimas/química
20.
Small ; 14(13): e1703934, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29443449

RESUMO

Humidity sensors are essential components in wearable electronics for monitoring of environmental condition and physical state. In this work, a unique humidity sensing layer composed of nitrogen-doped reduced graphene oxide (nRGO) fiber on colorless polyimide film is proposed. Ultralong graphene oxide (GO) fibers are synthesized by solution assembly of large GO sheets assisted by lyotropic liquid crystal behavior. Chemical modification by nitrogen-doping is carried out under thermal annealing in H2 (4%)/N2 (96%) ambient to obtain highly conductive nRGO fiber. Very small (≈2 nm) Pt nanoparticles are tightly anchored on the surface of the nRGO fiber as water dissociation catalysts by an optical sintering process. As a result, nRGO fiber can effectively detect wide humidity levels in the range of 6.1-66.4% relative humidity (RH). Furthermore, a 1.36-fold higher sensitivity (4.51%) at 66.4% RH is achieved using a Pt functionalized nRGO fiber (i.e., Pt-nRGO fiber) compared with the sensitivity (3.53% at 66.4% RH) of pure nRGO fiber. Real-time and portable humidity sensing characteristics are successfully demonstrated toward exhaled breath using Pt-nRGO fiber integrated on a portable sensing module. The Pt-nRGO fiber with high sensitivity and wide range of humidity detection levels offers a new sensing platform for wearable humidity sensors.


Assuntos
Grafite/química , Nanopartículas/química , Platina/química , Água/química , Catálise , Umidade , Nitrogênio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA