Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Geochem Health ; 41(4): 1637-1646, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28780675

RESUMO

Peat moss-derived biochars were produced at the pyrolytic temperatures of 300, 500, and 700 °C and were tested for evaluating the removal efficiency of volatile organic compounds (VOCs) from waters. As the pyrolytic temperature increases, the carbon contents were increased from 66 to 84%, and the contents of hydrogen and oxygen were decreased from 4 to 1% and from 19 to 4%, respectively. The surface areas of the biochars were 2 m2 g-1 at the pyrolysis temperature of 300 °C and were increased to 200 and 300 m2 g-1 at 500 and 700 °C, respectively. Results of FTIR analysis showed that functional groups such as hydroxyl, nitro, and carboxyl groups were observed in the biochar produced at 300 °C; however, the functional groups were removed in the biochars produced at higher temperatures. Sorption kinetics and equilibrium experiments were conducted with selected six VOCs of benzene (BZN), toluene (TOL), ethylbenzene (EBZ), p-xylene (pXYL), trichloroethylene (TCE), and tetrachloroethylene (PCE), which are the most common VOCs found in contaminated groundwater of South Korea. Sorption equilibrium was attained in 6 h with the constants of first order kinetic rate of 0.5 h-1 for the VOCs tested. Freundlich isotherm well described the adsorption of VOCs to the biochars. Biochar produced at 500 °C showed the highest sorption capacity for all VOCs with an average Kf of 7692 (±2265), although biochars produced at 300 °C (Kf = 3146 ± 629) and 700 °C (Kf = 2776 ± 2693) showed the similar sorption capacity. The biochars produced at 500 °C can be an excellent remover of VOCs in contaminated groundwater.


Assuntos
Carvão Vegetal/química , Sphagnopsida/química , Compostos Orgânicos Voláteis/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Carbono/análise , Água Subterrânea/química , Hidrogênio/análise , Cinética , Oxigênio/análise , Pirólise , República da Coreia , Temperatura , Tricloroetileno/química , Tricloroetileno/isolamento & purificação , Compostos Orgânicos Voláteis/química , Poluentes Químicos da Água/química , Purificação da Água
2.
Ultrason Sonochem ; 72: 105412, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33316732

RESUMO

This study investigated the degradation of ibuprofen (IBP), an activated persulfate (PS), when subjected to ultrasonic (US) irradiation and mechanical mixing (M). The effects of several critical factors were evaluated, including the effect of rpm on M, PS concentration, and initial pH, and that of temperature on IBP degradation kinetics and the PS activation mechanism. The resulting IBP oxidation rate constant was significantly higher at 400 rpm. As the PS load increased, the IBP oxidation rate constant increased. The value of the IBP reaction rate increased with decreasing pH; below pH 4.9, there was no significant difference in the IBP oxidation rate constant. The IBP oxidation activation energy when using the US/M-PS system was 18.84 kJ mol-1. In the US/M-PS system, PS activation was the primary effect of temperature at the interface during the explosion of cavitation bubbles. These encouraging results suggest that the US-PS/M process is a promising strategy for the treatment of IBP-based water pollutants.

3.
Chemosphere ; 272: 129560, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33460828

RESUMO

The aim of this study was to evaluate the performance of a new adsorbent in terms of beading the sludge generated from coal mine drainage or arsenic removed from water is treated by electro-purification (EP) and chemical-precipitation (CP) methods. Batch experiments were conducted to study the influence of experimental parameters such as pH and temperature, as well as the mechanism of arsenic adsorption with the new adsorbent. The porosity of coal mine drainage sludge (CMDS)-beaded adsorbent made of chitosan and alginate was optimized by adding NaHCO3 powder to generate CO2 gas during the preparation process. Two types of adsorbents, beaded EP Najeon CMDS (BCMDSEP-NJ) and beaded CP Yeongdong CMDS (BCMDSCP-YD), were prepared by heating. The specific surface areas of the powdered adsorbents CMDSEP-NJ and CMDSCP-YD were 104 and 231 m2 g-1, respectively. The prepared beaded adsorbents BCMDSEP-NJ and BCMDSCP-YD had good porosity and specific surface areas of 16.8 and 21.2 m2 g-1, respectively. The X-ray diffraction results showed that the structure was goethite (aragonite) and schwertmannite. The pseudo second-order, intra-particle, and Langmuir models were used to explain the adsorption process. The qmax values of As(III) with BCDMSEP-NJ and BCMDSCP-YD adsorbents are 4.31 and 4.58 mg g-1, respectively and those of AS(V) are 9.31 and 10.93 mg g-1, respectively. The adsorption capacity for As(III) increased with increasing pH, whereas that for As(V) decreased. The activation energy was 8 kJ mol-1 or more. The mechanism of adsorption of arsenic using a beaded adsorbent was chemical adsorption followed by diffusion. The results of the present study suggest that new adsorbents can be effectively utilized for arsenic removal from water.


Assuntos
Arsênio , Poluentes Químicos da Água , Purificação da Água , Adsorção , Carvão Mineral , Concentração de Íons de Hidrogênio , Cinética , Pós , Esgotos , Poluentes Químicos da Água/análise
4.
Ultrason Sonochem ; 65: 105065, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32199254

RESUMO

The use of a 20-kHz probe-type sonicator irradiating downward in a 500 mL vessel was optimized for the enhancement of the sonochemical activity in terms of the geometric and operational factors. These factors included the probe immersion depth (the vertical position of the probe), input power, height of the liquid from the bottom, horizontal position of the probe, and thickness of bottom plate The sonochemical oxidation reactions were investigated both quantitatively and qualitatively using calorimetry, KI dosimetry, and luminol (Sonochemiluminescence, SCL) techniques. The sonochemical activity was very positively affected by the vertical boundaries. The highest sonochemical activity was obtained when the probe was placed close to the bottom of the vessel (immersion depth of 60 mm), with a high input power (input power of 75%), and optimal liquid height condition (liquid height of 70 mm). The SCL image analysis showed that the cavitational activity zone gradually expanded around the probe body and changed into a circular shape as the experimental conditions were optimized, and consequently the sonochemical activity increased. The formation of a large bright circular-shaped activity zone could be attributed to the strong reflections of the ultrasound firstly, at the vessel bottom and secondly, at the liquid surface. On the other hand, the cavitational activity zone and the sonochemical activity were negatively affected by the horizontal boundaries when the probe was placed close to the side wall of the vessel. In addition, it was found that the sonochemical activity was also significantly affected by the thickness of the support plate owing to the reflection and transmission of the ultrasound at the boundary between the liquid and the solid media.

5.
Chemosphere ; 238: 124559, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31446279

RESUMO

The adsorption of bisphenol-A (BPA) on ordered mesoporous carbon (CMK-3) and modified CMK-3 (MCMK-3) for decontamination of aqueous medium was investigated. The CMK-3 and MCMK-3 materials had uniform pore sizes of 3.60 and 3.70 nm and high Brunauer-Emmett-Teller (BET) surface areas of 751 and 564 m2 g-1, respectively. The maximum adsorption capacities of CMK-3 and MCMK-3 were 178.57 (0.24 mg m-2) and 238.01 (0.42 mg m-2) mg g-1, respectively at 298 K (pH 6.4). The difference in the adsorption capacities is attributed to the specific surface area and hydrophobicity of the adsorbents. The adsorption of BPA on CMK-3 and MCMK-3 may be influenced by π-π bonding and hydrophobic and electrostatic interactions, and the excellent adsorption capacity of MCMK-3 is attributed to its unique sp2-hybridized single-atom-layer structure. The kinetics and isotherm data were described by the pseudo-second order kinetic model and the Langmuir isotherm, respectively. This difference in the adsorption kinetics of CMK-3 and MCMK-3 is caused by the increase in the pore diameter of the latter. Further, CMK-3 and MCMK-3, with an open geometry consisting of interlinked nanorods, allow for faster intraparticle diffusion. Overall, CMK-3 and MCMK-3 could be promising adsorbents for the removal of chemicals containing benzene rings from wastewater.


Assuntos
Compostos Benzidrílicos/isolamento & purificação , Carbono/química , Fenóis/isolamento & purificação , Águas Residuárias/análise , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Adsorção , Compostos Benzidrílicos/metabolismo , Cinética , Fenóis/metabolismo , Águas Residuárias/química , Poluentes Químicos da Água/metabolismo
6.
Ultrason Sonochem ; 66: 105106, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32247235

RESUMO

Hydrodynamic cavitation (HC) and Fe(II) are advanced oxidation processes, in which pentachlorophenol (PCP) is treated by the redox method of activating persulfate (PS). The kinetics and mechanism of the HC and Fe(II) activation of PS were examined in aqueous solution using an electron spin resonance (ESR) spin trapping technique and radical trapping with pure compounds. The optimum ratio of Fe(II)/PS was 1:2, and the hydroxyl radical (HO) and sulfate radical (SO4-) generation rate were 5.56 mM h-1 and 8.62 µM h-1, respectively. The generation rate and Rct of HO and SO4- at pH 3 and 50 °C in the Fe(II)/PS/HC system are 7584.6 µM h-1, 0.013 and 24.02 µM h-1, 3.95, respectively. The number of radicals was reduced as the pH increased, and it increased with increasing temperature. The PCP reaction rate constants was 4.39 × 10-2 min-1 at pH 3 and 50 °C. The activation energy was 10.68 kJ mol-1. In addition, the mechanism of PCP treatment in the Fe(II)/PS/HC system was a redox reaction, and the HO-/SO4- contribution was 81.1 and 18.9%, respectively. In this study, we first examined PCP oxidation through HO and SO4- quantification using only the Fe(II)/PS/HC process. Furthermore, the results provide the foundation for activation of PS by HC and Fe(II), but also provide a data basis for similar organic treatments other than PCP.

7.
Ultrason Sonochem ; 52: 326-335, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30660376

RESUMO

A cost-effective method for treating oxalic acid (OA) during rare-earth extraction was developed using hydrodynamic cavitation (HC), ozone (O3), and persulfate (PS) (HC@PS@O3 process). The results showed that the optimal inlet pressure during HC was 5.10 kg cm-2 with an orifice plate diameter of 2 mm. Moreover, HC was shown to activate PS, providing an alternative activation method to base or heat as an ultrasound activation method for chemical oxidation. O3 was also shown to activate PS. For OA oxidation using the HC@PS@O3 process, the optimum pH was 3 and the reaction rate increased with increasing temperature. Further, the activation energy was 36.69 kJ mol-1. The mechanisms unveiled in this study will allow optimization of the HC@PS@O3 process as a chemical oxidation technology. The kinetic investigation and economic evaluation of the HC@PS@O3 process can be used as the basis for real wastewater treatment processes in the future.

8.
Ultrason Sonochem ; 42: 26-30, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29429668

RESUMO

Peat-moss derived biochar was used as a sonocatalyst for the degradation of rhodamine B (RhB) at different ultrasonic frequencies (40 kHz and 300 kHz). The biochar was prepared by pyrolysis of peat-moss at 300 °C under N2-saturated conditions. High removal efficiency was achieved when biochar (1000 mg L-1) was used as a sonocatalyst in the 40 kHz system, and high removal could be achieved by pre-adsorption and radical oxidation reactions on the surface of the biochar. This was validated in experiments employing radical scavengers. Sonochemiluminescence images and real images of the systems with no biochar, 100 mg L-1 biochar, and 1000 mg L-1 biochar also supported this observation. On the other hand, the addition of the biochar was less effective than expected for the degradation of RhB at 300 kHz. This was due to low dispersion of the biochar in solution in the high frequency system, where relatively weaker sonophysical effects could be obtained.


Assuntos
Carvão Vegetal/química , Ondas Ultrassônicas , Catálise , Poluentes Ambientais/química , Rodaminas/química
9.
J Hazard Mater ; 344: 1116-1125, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30216971

RESUMO

Degradation of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in real-field soil was conducted using an integrated photocatalysis-solvent migration system of BiVO4/Bi2O3 and n-hexane. The photocatalyst BiVO4/Bi2O3 was synthesized, and its performance was found to be affected by the BiVO4 content, with 20wt% BiVO4 showing the best performance owing to its p-n heterojunction being well formed. Migration was affected by the amount of n-hexane, with 15% n-hexane giving the most effective transportation of PCDD/Fs. 37.2% of 17 PCDD/Fs was removed in 60h by the integrated photocatalysis-solvent migration system, although the reaction zone covered 8.5% of the volume of the soil. The result showed that migration via n-hexane fulfilled the aim of carrying contaminants from inside of the soil to the surface. Electron-scavenging experiments with BiVO4/Bi2O3 showed an 18.4% of performance in removal compared to no-scavenging condition, which showed that the main reactions driving BiVO4/Bi2O3 visible-light photocatalysis for aryl-chloride were found to be reduction-based. Owing to the hindering effect of Cl atoms, degradation by hydroxyl radical could proceed after initial dechlorination. This study establishes the applicability of integrated photocatalysis-solvent migration systems in real-field settings, and is the first report of a visible-light photocatalyst, BiVO4/Bi2O3, for the degradation of PCDD/Fs in soil.

10.
Ultrason Sonochem ; 43: 193-200, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29555275

RESUMO

In order to enhance sonocatalytic oxidation of a recalcitrant organic pollutant, rhodamine B (RhB), it is necessary to study the fundamental aspects of sonocatalysis. In this study, TiO2-incorporated nano-structured carbon (i.e., carbon nanotubes (CNTs) or graphene (GR)) composites were synthesized by coating TiO2 on CNTs or GR of different mass percentages (0.5, 1, 5, and 10 wt%) by a facile hydrothermal method. The sonocatalytic degradation rates of RhB were examined for the effect of ultrasound (US) frequency and calcination temperature by using the prepared TiO2-NSC composites. Since US frequency affected the sonoluminescence (SL) intensities, it was proposed that there exists a correlation between the surface area or band-gap of the sonocatalysts and the degradation kinetic constants of RhB. In addition, the reusability of TiO2-GR composites was also investigated. Overall, the performance of TiO2-GRs prepared by the hydrothermal method was better than that of calcined TiO2-CNTs. Among TiO2-GRs, 5% GR incorporated media (TiO2-GR-5) showed the best performance. Interestingly, the kinetic constants of sonocatalysts prepared under hydrothermal conditions had a negative linear relationship with the band-gap energy for the corresponding media. Furthermore, the strongest SL intensity and highest degradation rates of RhB for both carbonaceous composites were observed at 500 kHz. The kinetic constants of calcined media decreased linearly as the specific area of the media decreased, while the band-gap energy could not be correlated with the kinetic constants. The GR combined TiO2 composite might be a good sonocatalyst in wastewater treatment using ultrasound-based oxidation because of its high stability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA