Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Nano Lett ; 23(23): 11019-11025, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-37988451

RESUMO

The demand for high-speed and low-loss interconnects in modern computer architectures is difficult to satisfy by using traditional Si-based electronics. Although optical interconnects offer a promising solution owing to their high bandwidth, low energy dissipation, and high-speed processing, integrating elements such as a light source, detector, and modulator, comprising different materials with optical waveguides, presents many challenges in an integrated platform. Two-dimensional (2D) van der Waals (vdW) semiconductors have attracted considerable attention in vertically stackable optoelectronics and advanced flexible photonics. In this study, optoelectronic components for exciton-based photonic circuits are demonstrated by integrating lithographically patterned poly(methyl methacrylate) (PMMA) waveguides on 2D vdW devices. The excitonic signals generated from the 2D materials by using laser excitation were transmitted through patterned PMMA waveguides. By introducing an external electric field and combining vdW heterostructures, an excitonic switch, phototransistor, and guided-light photovoltaic device on SiO2/Si substrates were demonstrated.

2.
Inorg Chem ; 62(32): 12674-12682, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37531606

RESUMO

Although magnetic order is suppressed by a strong frustration, it appears in complex forms such as a cycloid or spin density wave in weakly frustrated systems. Herein, we report a weakly magnetically frustrated two-dimensional (2D) van der Waals material CrPSe3. Polycrystalline CrPSe3 was synthesized at an optimized temperature of 700 °C to avoid the formation of any secondary phases (e.g., Cr2Se3). The antiferromagnetic transition appeared at TN ≈ 127 K with a large Curie-Weiss temperature θCW ≈ -301 K via magnetic susceptibility measurements, indicating weak frustration in CrPSe3 with a frustration factor of f (|θCW|/TN) ≈ 2.4. Evidently, the formation of a long-range incommensurate antiferromagnetic order was revealed by neutron diffraction measurements at low temperatures (below 120 K). The monoclinic crystal structure of the C2/m symmetry is preserved over the studied temperature range down to 20 K, as confirmed by Raman spectroscopy measurements. Our findings on the incommensurate antiferromagnetic order in 2D magnetic materials, not previously observed in the MPX3 family, are expected to enrich the physics of magnetism at the 2D limit, thereby opening opportunities for their practical applications in spintronics and quantum devices.

3.
Small ; 18(20): e2106368, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35451163

RESUMO

Advances in large-area and high-quality 2D transition metal dichalcogenides (TMDCs) growth are essential for semiconductor applications. Here, the gas-phase alkali metal-assisted metal-organic chemical vapor deposition (GAA-MOCVD) of 2D TMDCs is reported. It is determined that sodium propionate (SP) is an ideal gas-phase alkali-metal additive for nucleation control in the MOCVD of 2D TMDCs. The grain size of MoS2 in the GAA-MOCVD process is larger than that in the conventional MOCVD process. This method can be applied to the growth of various TMDCs (MoS2 , MoSe2 , WSe2 , and WSe2 ) and the generation of large-scale continuous films. Furthermore, the growth behaviors of MoS2 under different SP and oxygen injection time conditions are systematically investigated to determine the effects of SP and oxygen on nucleation control in the GAA-MOCVD process. It is found that the combination of SP and oxygen increases the grain size and nucleation suppression of MoS2 . Thus, the GAA-MOCVD with a precise and controllable supply of a gas-phase alkali metal and oxygen allows achievement of optimum growth conditions that maximizes the grain size of MoS2 . It is expected that GAA-MOCVD can provide a way for batch fabrication of large-scale atomically thin electronic devices based on 2D semiconductors.

4.
Nano Lett ; 21(1): 43-50, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33052049

RESUMO

The extreme elastic strain of monolayer transition metal dichalcogenides provides an ideal platform to achieve efficient exciton funneling via local strain modulation; however, studies conducted thus far have focused on the use of substrates with fixed strain profiles. We prepared 1L-WS2 on a flexible substrate such that the formation of topographic wrinkles could be switched on or off, and the depth or the direction of the wrinkle could be modified by external strain, thereby providing full control of the periodic undulation of the band gap profile of 1L-WS2 in the range 0-57 meV. Nanoscale photoluminescence (PL) imaging unambiguously evinced that the photoexcited excitons of 1L-WS2 were accumulated at the top regions of the wrinkles with less band gap than the valley region. Our results of broad tunability of the two-dimensional (2D) exciton funneling suggest a promising route to control exciton drift for enhanced optoelectronic performances and future 2D exciton devices.

5.
J Am Chem Soc ; 142(50): 21059-21067, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33217232

RESUMO

Recently, halide perovskites have gained significant attention from the perspective of efficient spintronics owing to the Rashba effect. This effect occurs as a consequence of strong spin-orbit coupling under a noncentrosymmetric environment, which can be dynamic and/or static. However, there exist intense debates on the origin of broken inversion symmetry since the halide perovskites typically crystallize into a centrosymmetric structure. In order to clarify the issue, we examine both dynamic and static effects in the all-inorganic CsPbBr3 and organic-inorganic CH3NH3PbBr3 (MAPbBr3) perovskite single crystals by employing temperature- and polarization-dependent photoluminescence excitation spectroscopy. The perovskite single crystals manifest the dynamic effect by photon recycling in the indirect Rashba gap, causing dual peaks in the photoluminescence. However, the effect vanishes in CsPbBr3 at low temperatures (<50 K) accompanied by a striking color change of the crystal, arising presumably from lower degrees of freedom for inversion symmetry breaking associated with the thermal motion of the spherical Cs cation compared with the polar MA cation in MAPbBr3. We also show that the static Rashba effect occurs only in MAPbBr3 below 90 K, presumably due to surface reconstruction via MA-cation ordering, which likely extends across a few layers from the crystal surface to the interior. We further demonstrate that this static Rashba effect can be completely suppressed upon surface treatment with polymethyl methacrylate (PMMA) coating. We believe that our results provide a rationale for the Rashba effects in halide perovskites.

6.
Int J Legal Med ; 134(6): 2053-2059, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32929592

RESUMO

The InnoTyper 21® Human Identification kit consists of amelogenin and 20 bi-allelic Alus, retrotransposon markers existing abundantly in human genome. The InnoTyper 21® kit produces shorter amplicons (60-125 bp) than conventional short tandem repeat (STR) genotyping kit, then it is effective on the analysis of challengeable forensic samples including insufficient or highly degraded DNAs. Also, as the genotyping with InnoTyper21® kit is compatible with PCR and capillary electrophoresis, it is easy to incorporate into the workflow in forensic laboratories. In the internal validation of InnoTyper21® kit on sensitivity, degradation, and mixture studies for the evaluation in this study, we acquired full profiles on analyzing small concentration DNA (as low as 25 pg) and highly degraded DNA (up to 105 degradation index value). Through the Korean population study, forensic statistical parameters were investigated and a specific variant of T insertion in NBC51 was confirmed in six samples. Comparison of Korean population with five populations or 1000 Genomes Project data show Korean specific substructure. It is expected that the InnoTyper 21® kit will be used into the actual forensic cases, utilizing the population study investigated through this research.


Assuntos
Alelos , Elementos Alu , Povo Asiático/genética , Impressões Digitais de DNA/métodos , Loci Gênicos , Eletroforese Capilar , Feminino , Antropologia Forense/métodos , Humanos , Masculino , Reação em Cadeia da Polimerase , República da Coreia/etnologia , Sensibilidade e Especificidade
7.
Int J Legal Med ; 134(4): 1551, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32219527

RESUMO

The above article was published with two author names being incorrect. The published paper states "'Hyeun Kyu Yoon and Ki min Seong", whereas it should be "'Hyun Kyu Yoon and Ki Min Seong".

8.
Int J Legal Med ; 134(3): 963-975, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31418076

RESUMO

DNA quantification is an essential step for successful multiplex short tandem repeat (STR) polymerase chain reactions (PCR), which are used for confirming identities using human genomic DNA. The new DNA quantification kit, named the National Forensic Service Quantification (NFSQ) kit, simultaneously provides total human DNA concentration, human male DNA concentration, and a DNA degradation index (DI) using multiplex TaqMan fluorescent probes. The NFSQ was validated according to developmental validation guidelines from the SWGDAM and MIQE. NFSQ detected up to 0.00128 ng/µL and could detect male DNA up to a 1:8000 ratio of male to female DNA. In PCR inhibitor tests, NFSQ could measure DNA at a concentration of 200 ng/µL of humic acid and 600 µM of hematin. The NFSQ kit showed a DI value trend similar to other qPCR kits. In the reproducibility study, the coefficient of variation of the NFSQ kit was within 10%. The quantitative results of the casework samples obtained using the NFSQ kit were consistent with the STR interpretation results. The NFSQ kit can be useful in the human identification process, as it has detection capabilities similar to those of other comparable quantification kits.


Assuntos
Impressões Digitais de DNA/instrumentação , Análise de Sequência de DNA/métodos , Animais , Feminino , Corantes Fluorescentes , Marcadores Genéticos , Humanos , Masculino , Repetições de Microssatélites , Desnaturação de Ácido Nucleico , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , República da Coreia , Sensibilidade e Especificidade , Especificidade da Espécie
9.
Nano Lett ; 18(7): 4523-4530, 2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-29921125

RESUMO

Chemical treatment using bis(trifluoromethane) sulfonimide (TFSI) was shown to be particularly effective for increasing the photoluminescence (PL) of monolayer (1L) MoS2, suggesting a convenient method for overcoming the intrinsically low quantum yield of this material. However, the underlying atomic mechanism of the PL enhancement has remained elusive. Here, we report the microscopic origin of the defect healing observed in TFSI-treated 1L-MoS2 through a correlative combination of optical characterization and atomic-scale scanning transmission electron microscopy, which showed that most of the sulfur vacancies were directly repaired by the extrinsic sulfur atoms produced from the dissociation of TFSI, concurrently resulting in a significant PL enhancement. Density functional theory calculations confirmed that the reactive sulfur dioxide molecules that dissociated from TFSI can be reduced to sulfur and oxygen gas at the vacancy site to form strongly bound S-Mo. Our results reveal how defect-mediated nonradiative recombination can be effectively eliminated by a simple chemical treatment method, thereby advancing the practical applications of monolayer semiconductors.

10.
Nano Lett ; 18(4): 2316-2323, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29561626

RESUMO

Monolayer (1L) transition metal dichalcogenides (TMDCs) are promising materials for nanoscale optoelectronic devices because of their direct band gap and wide absorption range (ultraviolet to infrared). However, 1L-TMDCs cannot be easily utilized for practical optoelectronic device applications (e.g., photodetectors, solar cells, and light-emitting diodes) because of their extremely low optical quantum yields (QYs). In this investigation, a high-gain 1L-MoS2 photodetector was successfully realized, based on the surface plasmon (SP) of the Ag nanowire (NW) network. Through systematic optical characterization of the hybrid structure consisting of a 1L-MoS2 and the Ag NW network, it was determined that a strong SP and strain relaxation effect influenced a greatly enhanced optical QY. The photoluminescence (PL) emission was drastically increased by a factor of 560, and the main peak was shifted to the neutral exciton of 1L-MoS2. Consequently, the overall photocurrent of the hybrid 1L-MoS2 photodetector was observed to be 250 times better than that of the pristine 1L-MoS2 photodetector. In addition, the photoresponsivity and photodetectivity of the hybrid photodetector were effectively improved by a factor of ∼1000. This study provides a new approach for realizing highly efficient optoelectronic devices based on TMDCs.

11.
Lifetime Data Anal ; 25(2): 259-279, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30076511

RESUMO

There has arisen a considerable body of research addressing the estimation of association between paired failure times in the presence of competing risks. In a 2002 paper, Bandeen-Roche and Liang proposed the conditional cause-specific hazard ratio (CCSHR) as a measure of this association and a parametric method by which to estimate it. The method features an interpretable decomposition of the CCSHR into factors describing the association between a pair's times to first failure among multiple failure causes and the association in pair members' propensities to fail due to a common cause. There were indications of sensitivity to model assumptions, however, in the 2002 work. Here we report a detailed study of the method's sensitivity to its parametric assumptions. We conclude that the method's performance is most sensitive to mis-specification of temporality in the association between pair members' first-failure times and of correlation between propensity to fail early or late and the propensity to fail of a specific cause. Implications for methods development are highlighted.


Assuntos
Simulação por Computador , Confiabilidade dos Dados , Modelos de Riscos Proporcionais , Algoritmos , Análise de Dados , Humanos , Funções Verossimilhança , Modelos Estatísticos , Análise Multivariada , Sensibilidade e Especificidade
12.
Opt Express ; 25(6): 6215-6226, 2017 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-28380974

RESUMO

The waveguiding of surface enhanced Raman scattering (SERS) signals was demonstrated by using organic semiconducting microrods (MRs) hybridized with functionalized gold nanoparticles (Au-NPs). Organic semiconducting 1,4-bis(3,5-bis(trifluoromethyl) styryl)-2,5-dibromobenzene (TSDB) crystalline MRs were fabricated as active optical waveguiding system using a self-assembly method. The static SERS effect and the enhancement of photoluminescence were simultaneously observed for the TSDB MRs hybridized with Au-NPs. The waveguiding characteristics of the SERS signals through the hybrid MR of TSDB/Au-NPs were investigated using a high-resolution laser confocal microscope (LCM) system. The enhanced output Raman characteristic modes of TSDB molecules were clearly observed along the hybrid MR of TSDB/Au-NPs, which is attributed to stronger scattering of the light and the increased coupling efficiency of waveguiding due to the presence of Au-NPs. The waveguiding of the SERS signals exhibited different decay constants for the corresponding characteristic Raman modes, such as -C = C- aromatic, -CF3, and C-Br stretching modes. The observed waveguiding characteristics of various SERS modes enable multi-modal waveguiding with relatively narrow spectral resolution for nanophotonic information.

13.
Nanotechnology ; 28(46): 465705, 2017 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-28901949

RESUMO

Surface-enhanced Raman scattering (SERS) has received considerable attention as a noninvasive optical sensing technique with ultrahigh sensitivity. While numerous types of metallic particles have been actively investigated as SERS substrates, the development of new SERS agents with high sensitivity and their reliable characterization are still required. Here we report the preparation and characterization of flower-shaped silver (Ag) nanoparticles that exhibit high-sensitivity single-particle SERS performance. Ag nanoflowers (NFs) with bud sizes in the range 220-620 nm were synthesized by the wet synthesis method. The densely packed nanoscale petals with thicknesses in the range 9-22 nm exhibit a large number of hot spots that significantly enhance their plasmonic activity. A single Ag NF particle (530-620 nm) can detect as little as 10-11 M 4-mercaptobenzoic acid, and thus provides a sensitivity three orders of SERS magnitude greater than that of a spherical Ag nanoparticle. The analytical enhancement factors for single Ag NF particles were found to be as high as 8.0 × 109, providing unprecedented high SERS detectivity at the single particle level. Here we present an unambiguous and systematic assessment of the SERS performances of the Ag NFs and demonstrate that they provide highly sensitive sensing platforms by single SERS particle.

14.
Nanotechnology ; 28(43): 435501, 2017 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-28841139

RESUMO

Layered transition metal dichalcogenides, such as MoS2, WSe2 and WS2, are exciting two-dimensional (2D) materials because they possess tunable optical and electrical properties that depend on the number of layers. In this study, the nanoscale photoluminescence (PL) characteristics of the p-type WSe2 monolayer, and WSe2 layers hybridized with the fluorescent dye Cy3 attached to probe-DNA (Cy3/p-DNA), have been investigated as a function of the concentration of Cy3/DNA by using high-resolution laser confocal microscopy. With increasing concentration of Cy3/p-DNA, the measured PL intensity decreases and its peak is red-shifted, suggesting that the WSe2 layer has been p-type doped with Cy3/p-DNA. Then, the PL intensity of the WSe2/Cy3/p-DNA hybrid system increases and the peak is blue-shifted through hybridization with relatively small amounts of target-DNA (t-DNA) (50-100 nM). This effect originates from charge and energy transfer from the Cy3/DNA to the WSe2. For t-DNA detection, our systems using p-type WSe2 have the merit in terms of the increase of PL intensity. The p-type WSe2 monolayers can be a promising nanoscale 2D material for sensitive optical bio-sensing based on the doping and de-doping responses to biomaterials.


Assuntos
Técnicas Biossensoriais , DNA/análise , Medições Luminescentes/métodos , Dispositivos Ópticos , Compostos de Selênio/química , Compostos de Tungstênio/química , Pareamento de Bases , Carbocianinas/química , DNA/química , Sondas de DNA/química , Transferência de Energia , Corantes Fluorescentes/química , Luminescência , Hibridização de Ácido Nucleico
15.
Nanotechnology ; 28(18): 185702, 2017 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-28319028

RESUMO

Organic/inorganic hybrid structures have been widely studied because of their enhanced physical and chemical properties. Monolayers of transition metal dichalcogenides (1L-TMDs) and organic nanoparticles can provide a hybridization configuration between zero- and two-dimensional systems with the advantages of convenient preparation and strong interface interaction. Here, we present such a hybrid system made by dispersing π-conjugated organic (tris (8-hydroxyquinoline) aluminum(III)) (Alq3) nanoparticles (NPs) on 1L-MoS2. Hybrids of Alq3 NP/1L-MoS2 exhibited a two-fold increase in the photoluminescence of Alq3 NPs on 1L-MoS2 and the n-doping effect of 1L-MoS2, and these spectral and electronic modifications were attributed to the charge transfer between Alq3 NPs and 1L-MoS2. Our results suggested that a hybrid of organic NPs/1L-TMD can offer a convenient platform to study the interface interactions between organic and inorganic nano objects and to engineer optoelectronic devices with enhanced performance.

16.
Opt Express ; 24(24): 27546-27553, 2016 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-27906325

RESUMO

Two-dimensional (2-D) transition metal dichalcogenides, such as MoS2, WSe2, and WS2, are promising materials for application in field effect transistors, optoelectronics, and sensing devices. In this study, 2-D WSe2 samples with various numbers of layers were hybridized with functionalized gold nanoparticles (Au-NPs) to achieve surface-enhanced Raman scattering (SERS). The nanoscale Raman and photoluminescence spectra of the WSe2 layers and WSe2/Au-NP hybrids were measured using a high-resolution laser confocal microscope. The WSe2 exhibited distinct optical characteristics depending on the number of WSe2 layers. The intensities of the Raman characteristic modes of the WSe2 layers were significantly enhanced after hybridization with functionalized Au-NPs, indicating the SERS effect. The SERS effect weakened with increasing the number of WSe2 layers. The SERS effect was more pronounced for mono- and bi-layer WSe2 systems compared with the multi-layer WSe2 systems.

17.
Opt Express ; 24(19): 21551-9, 2016 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-27661893

RESUMO

Stacked bilayer molybdenum disulfide (MoS2) exhibits interesting physical properties depending on the stacking orientation and interlayer coupling strength. Although optical properties, such as photoluminescence, Raman, and absorption properties, are largely dependent on the interlayer coupling of stacked bilayer MoS2, the origin of variations in these properties is not clearly understood. We performed comprehensive confocal Raman and absorption mapping measurements to determine the dependence of these spectra on the stacking orientation of bilayer MoS2. The results indicated that with 532-nm laser excitation, the Raman scattering intensity gradually increased upon increasing the stacking angle from 0° to 60°, whereas 458-nm laser excitation resulted in the opposite trend of decreasing Raman intensity with increasing stacking angle. This opposite behavior of the Raman intensity dependence was explained by the varying resonance condition between the Raman excitation wavelength and C exciton absorption energy of bilayer MoS2. Our work sheds light on the intriguing effect of the subtle interlayer interaction in stacked MoS2 bilayers on the resulting optical properties.

18.
Opt Express ; 24(14): 15171-9, 2016 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-27410795

RESUMO

Metal/TiO2 hybrid nanostructures offer more efficient charge separation and a broader range of working wavelengths for photocatalytic reactions. The sizes and shapes of such hybrid nanostructures can affect the charge separation performance when the structures interact with light, but assessments of the interaction of light with these metal-TiO2 nanostructures have only been carried out on ensemble averages, hindering both systematic descriptions of such hybrid structures and the design of new ones. Here, we fabricated TiO2 nanotubes (NTs) with and without core Au nanowires (NWs), and used spectroscopy and calculations to assess their scattering and absorption of light at the single NW level. According to the results of spectral imaging and numerical calculations, the Au/TiO2 NWs scattered and absorbed light substantially more strongly than did the plain TiO2 NTs. Measurements of the degradation of the AO7 dye to assess the photocatalytic performance of the Au/TiO2 NWs were consistent with optical measurements demonstrating a two-fold improvement over plain TiO2 NTs under 360-nm-wavelength UV illumination. Our results suggests that nanoscale optical imaging can be used to visualize the performance of the photocatalytic reaction at the single nano-object level.

19.
Phys Rev Lett ; 115(22): 226801, 2015 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-26650314

RESUMO

Optoelectronics applications for transition-metal dichalcogenides are still limited by weak light absorption and their complex exciton modes are easily perturbed by varying excitation conditions because they are inherent in atomically thin layers. Here, we propose a method of selectively amplifying the primary exciton (A^{0}) among the exciton complexes in monolayer MoS_{2} via cyclic reexcitation of cavity-free exciton-coupled plasmon propagation. This was implemented by partially overlapping a Ag nanowire on a MoS_{2} monolayer separated by a thin SiO_{2} spacer. Exciton-coupled plasmons in the nanowire enhance the A^{0} radiation in MoS_{2}. The cumulative amplification of emission enhancement by cyclic plasmon traveling reaches approximately twentyfold selectively for the A^{0}, while excluding other B exciton and multiexciton by significantly reduced band filling, without oscillatory spectra implying plasmonic cavity effects.

20.
ACS Nano ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38920103

RESUMO

This study investigates the applicability of six transition metal dichalcogenides to efficient therapeutic drug monitoring of ten antiepileptic drugs using laser desorption/ionization-mass spectrometry. We found that molybdenum ditelluride and tungsten ditelluride are suitable for the sensitive quantification of therapeutic drugs. The contribution of tellurium to the enhanced efficiency of laser desorption ionization was validated through theoretical calculations utilizing an integrated model that incorporates transition-metal dichalcogenides and antiepileptic drugs. The results of our theoretical calculations suggest that the relatively low surface electron density for the tellurium-containing transition metal dichalcogenides induces stronger Coulombic interactions, which results in enhanced laser desorption and ionization efficiency. To demonstrate applicability, up to 120 patient samples were analyzed to determine drug concentrations, and the results were compared with those of immunoassay and liquid chromatography-tandem mass spectrometry. Agreements among these methods were statistically evaluated using the Passing-Bablok regression and Bland-Altman analysis. Furthermore, our method has been shown to be applicable to the simultaneous detection and multiplexed quantification of antiepileptic drugs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA