Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Appl Opt ; 62(26): 6871-6876, 2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37707024

RESUMO

This paper presents an integrated design process for optomechanical structures based on multidisciplinary optimization. The proposed integrated optimal design process comprises a finite element analysis by ANSYS Workbench, the MATLAB optomechanical transfer program, an optical analysis by ZEMAX, and the multidisciplinary optimization solver by Isight. In ANSYS Workbench, the deformation of optical surfaces, structures, and responses according to the design requirements is calculated in one project. Then, Zernike polynomial coefficients are calculated from surface deformation data of optical surfaces through a MATLAB optomechanical transfer program. In ZEMAX, the Zernike polynomial coefficients are imported into optical surface models of an optical system; then, optical performance parameters, such as the wavefront error, optical aberration, MTF, and OPD, are calculated. In the Isight environment, automatic iterative computations are performed between these three programs and, as a result, the design dimensions of optomechanical structures are determined, satisfying the design requirements and improving the performance of an optical system. By using this integrated optimal design process, the optimal design and analysis for a complete optomechanical structure, as well as individual structure parts, can be performed successfully. In this paper, the optimal design problem for three parts of a Cassegrain telescope, which consists of a primary mirror with an outer diameter of 156 mm and a secondary mirror with an outer diameter of 46 mm, was taken as an example. By using optimal parts, the image wavefront error of the Cassegrain telescope was decreased from 29.9 to 16.1 nm.

2.
Small ; 18(20): e2107638, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35426234

RESUMO

Although biomaterial-based triboelectric nanogenerators (Bio-TENGs) for use in wearable electronics and implantable sensors have been developed, power generation is not suitable for satisfying the basic requirements for practical applications. Here, to greatly enhance output performances of Bio-TENG devices, an antagonistic approach of diatom frustules (DFs) with amine and fluorine chemical functionalizations is reported. The DFs are treated with piranha solution to increase the density of hydroxyl groups and tribo-positive and tribo-negative composite films are designed with antagonistically functionalized DFs. The tribo-positive composites having electron donating functionality consist of aminated DFs and cellulose nanocrystals (CNCs), while the tribo-negative composite is composed of fluorinated DFs and polydimethylsiloxane (PDMS). An antagonistically and chemically functionalized TENG (ACF TENG) with an efficient contact area of 9.6 cm2 under a force of 8 N and a frequency of 5 Hz exhibits an output voltage of 248 V, a short-circuit current of 16.4 µA, and a power density of 2.01 W m-2 , which is 16.6 times higher than a reference (CNC:PDMS) TENG. This study shows a simple antagonistic approach for chemical functionalization as an efficient method to manipulate the tribo-polarity of bio-additives for enhancing power generation of Bio-TENGs.


Assuntos
Diatomáceas , Dispositivos Eletrônicos Vestíveis , Fontes de Energia Elétrica , Eletrônica , Nanotecnologia/métodos
3.
Appl Microbiol Biotechnol ; 103(13): 5435-5446, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31001747

RESUMO

Bioconversion of lignocellulosic biomass into ethanol requires efficient xylose fermentation. Previously, we developed an engineered Saccharomyces cerevisiae strain, named SR8, through rational and inverse metabolic engineering strategies, thereby improving its xylose fermentation and ethanol production. However, its fermentation characteristics have not yet been fully evaluated. In this study, we investigated the xylose fermentation and metabolic profiles for ethanol production in the SR8 strain compared with native Scheffersomyces stipitis. The SR8 strain showed a higher maximum ethanol titer and xylose consumption rate when cultured with a high concentration of xylose, mixed sugars, and under anaerobic conditions than Sch. stipitis. However, its ethanol productivity was less on 40 g/L xylose as the sole carbon source, mainly due to the formation of xylitol and glycerol. Global metabolite profiling indicated different intracellular production rates of xylulose and glycerol-3-phosphate in the two strains. In addition, compared with Sch. stipitis, SR8 had increased abundances of metabolites from sugar metabolism and decreased abundances of metabolites from energy metabolism and free fatty acids. These results provide insights into how to control and balance redox cofactors for the production of fuels and chemicals from xylose by the engineered S. cerevisiae.


Assuntos
Fermentação , Lignina/metabolismo , Metaboloma , Saccharomyces cerevisiae/metabolismo , Saccharomycetales/metabolismo , Xilose/metabolismo , Biomassa , Reatores Biológicos , Cromatografia Gasosa , Etanol/metabolismo , Glicerofosfatos/metabolismo , Espectrometria de Massas , Saccharomyces cerevisiae/genética , Saccharomycetales/genética , Xilulose/metabolismo
4.
Asian-Australas J Anim Sci ; 32(6): 776-782, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30208688

RESUMO

OBJECTIVE: Fasting may lead to changes in the microbiota and activity in the rumen. In the present study, the effects of fasting on rumen microbiota and the impact of fasting on in vitro rumen fermentation were evaluated using molecular culture-independent methods. METHODS: Three ruminally cannulated Holstein steers were fed rice straw and concentrates. The ruminal fluids were obtained from the same steers 2 h after the morning feeding (control) and 24 h after fasting (fasting). The ruminal fluid was filtrated through four layers of muslin, collected for a culture-independent microbial analysis, and used to determine the in vitro rumen fermentation characteristics. Total DNA was extracted from both control and fasting ruminal fluids. The rumen microbiota was assessed using denaturing gradient gel electrophoresis (DGGE) and quantitative polymerase chain reaction. Microbial activity was evaluated in control and fasting steers at various intervals using in vitro batch culture with rice straw and concentrate at a ratio of 60:40. RESULTS: Fasting for 24 h slightly affected the microbiota structure in the rumen as determined by DGGE. Additionally, several microorganisms, including Anaerovibrio lipolytica, Eubacterium ruminantium, Prevotella albensis, Prevotella ruminicola, and Ruminobacter amylophilus, decreased in number after fasting. In addition, using the ruminal fluid as the inoculum after 24 h of fasting, the fermentation characteristics differed from those obtained using non-fasted ruminal fluid. Compared with the control, the fasting showed higher total gas production, ammonia, and microbial protein production (p<0.05). No significant differences, however, was observed in pH and dry matter digestibility. CONCLUSION: When in vitro techniques are used to evaluate feed, the use of the ruminal fluid from fasted animals should be used with caution.

5.
Asian-Australas J Anim Sci ; 31(1): 40-46, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28427254

RESUMO

OBJECTIVE: To examine the effects of Rhodobacter sphaeroides (R. sphaeroides) supplementation as a direct-fed microbial (DFM) on rumen fermentation in dairy cows and on coenzyme Q10 (CoQ10) transition into milk, an in vitro rumen simulation batch culture and an in vivo dairy cow experiment were conducted. METHODS: The characteristics of in vitro ruminal fermentation were investigated using rumen fluids from six cannulated Holstein dairy cows at 2 h post-afternoon feeding. A control treatment was included in the experiments based on a typified total mixed ration (TMR) for lactating dairy cows, which was identical to the one used in the in vivo study, plus R. sphaeroides at 0.1%, 0.3%, and 0.5% TMR dry matter. The in vivo study employed six ruminally cannulated lactating Holstein cows randomly allotted to either the control TMR (C-TMR) treatment or to a diet supplemented with a 0.5% R. sphaeroides culture (S-TMR, dry matter basis) ad libitum. The presence of R. sphaeroides was verified using denaturing gradient gel electrophoresis (DGGE) applied to the bacterial samples obtained from the in vivo study. The concentration of CoQ10 in milk and in the supernatant from the in vitro study was determined using high performance liquid chromatography. RESULTS: The results of the in vitro batch culture and DGGE showed that the concentration of CoQ10 significantly increased after 2 h of R. sphaeroides supplementation above 0.1%. When supplemented to the diet of lactating cows at the level of 0.5%, R. sphaeroides did not present any adverse effect on dry matter intake and milk yield. However, the concentration of CoQ10 in milk dramatically increased, with treated cows producing 70.9% more CoQ10 than control cows. CONCLUSION: The CoQ10 concentration in milk increased via the use of a novel DFM, and R. sphaeroides might be used for producing value-added milk and dairy products in the future.

6.
Appl Environ Microbiol ; 80(10): 3095-102, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24610852

RESUMO

The model rumen Firmicutes organism Ruminococcus albus 8 was grown using ammonia, urea, or peptides as the sole nitrogen source; growth was not observed with amino acids as the sole nitrogen source. Growth of R. albus 8 on ammonia and urea showed the same growth rate (0.08 h(-1)) and similar maximum cell densities (for ammonia, the optical density at 600 nm [OD600] was 1.01; and for urea, the OD600 was 0.99); however, growth on peptides resulted in a nearly identical growth rate (0.09 h(-1)) and a lower maximum cell density (OD600 = 0.58). To identify differences in gene expression and enzyme activities, the transcript abundances of 10 different genes involved in nitrogen metabolism and specific enzyme activities were analyzed by harvesting mRNA and crude protein from cells at the mid- and late exponential phases of growth on the different N sources. Transcript abundances and enzyme activities varied according to nitrogen source, ammonia concentration, and growth phase. Growth of R. albus 8 on ammonia and urea was similar, with the only observed difference being an increase in urease transcript abundance and enzyme activity in urea-grown cultures. Growth of R. albus 8 on peptides showed a different nitrogen metabolism pattern, with higher gene transcript abundance levels of gdhA, glnA, gltB, amtB, glnK, and ureC, as well as higher activities of glutamate dehydrogenase and urease. These results demonstrate that ammonia, urea, and peptides can all serve as nitrogen sources for R. albus and that nitrogen metabolism genes and enzyme activities of R. albus 8 are regulated by nitrogen source and the level of ammonia in the growth medium.


Assuntos
Nitrogênio/metabolismo , Ruminococcus/metabolismo , Amônia/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Ruminococcus/enzimologia , Ruminococcus/genética , Ruminococcus/crescimento & desenvolvimento , Ureia/metabolismo
7.
Anim Microbiome ; 6(1): 14, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504362

RESUMO

BACKGROUND: The poultry industry encounters a number of factors that affect growth performance and productivity; nutrition is essential for sustaining physiological status and protecting against stressors such as heat, density, and disease. The addition of vitamins, minerals, and amino acids to the diet can help restore productivity and support the body's defense mechanisms against stress. Methionine (Met) is indispensable for poultry's energy metabolism, physiology, performance, and feed utilization capacity. Through this study, we aimed to examine the physiological effects of methionine supplementation on poultry as well as alterations of intestinal microbiome. METHODS: We utilized the DL- and L- form of methionine on Caenorhabditis elegans and the FIMM (Fermentor for intestine microbiota model) in-vitro digesting system. A genomic-analysis of the transcriptome confirmed that methionine supplementation can modulate growth-related physiological metabolic pathways and immune responses in the host poultry. The C. elegans model was used to assess the general health benefits of a methionine supplement for the host. RESULTS: Regardless of the type or concentration of methionine, supplementation with methionine significantly increased the lifespan of C. elegans. Feed grade L-Methionine 95%, exhibited the highest lifespan performance in C. elegans. Methionine supplementation increased the expression of tight junction genes in the primary intestinal cells of both broiler and laying hens, which is directly related to immunity. Feed grade L-Methionine 95% performed similarly or even better than DL-Methionine or L-Methionine treatments with upper doses in terms of enhancing intestinal integrity. In vitro microbial cultures of healthy broilers and laying hens fed methionine revealed changes in intestinal microflora, including increased Clostridium, Bacteroides, and Oscillospira compositions. When laying hens were given feed grade L-Methionine 95% and 100%, pathogenic Campylobacter at the genus level was decreased, while commensal bacteria were increased. CONCLUSIONS: Supplementation of feed grade L-Methionine, particularly L-Methionine 95%, was more beneficial to the host poultry than supplementing other source of methionine for maintaining intestinal integrity and healthy microbiome.

8.
Sci Total Environ ; 922: 171208, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38408652

RESUMO

Salmonella Typhimurium is a highly lethal pathogenic bacterium in weaned piglets, causing significant treatment costs and economic losses in the swine industry. Additionally, due to its ability to induce zoonotic diseases, resulting in harm to humans through the transmission of the pathogen from pork, it presents a serious public health issue. Bacteriophages (phages), viruses that infect specific bacterial strains, have been proposed as an alternative to antibiotics for controlling pathogenic bacteria. In this study, we isolated SLAM_phiST1N3, a phage infecting a multidrug-resistant (MDR) S. Typhimurium wild-type strain isolated from diseased pigs. First, comparative genomics and phylogenetic analysis revealed that SLAM_phiST1N3 belongs to the Cornellvirus genus. Moreover, utilizing a novel classification approach introduced in this study, SLAM_phiST1N3 was classified at the species level. Host range experiments demonstrated that SLAM_phiST1N3 did not infect other pathogenic bacteria or probiotics derived from pigs or other livestock. While complete eradication of Salmonella was not achievable in the liquid inhibition assay, surprisingly, we succeeded in largely eliminating Salmonella in the FIMM analysis, a gut simulation system using weaned piglet feces. Furthermore, using the C. elegans model, we showcased the potential of SLAM_phiST1N3 to prevent S. Typhimurium infection in living organisms. In addition, it was confirmed that bacterial control could be achieved when phage was applied to Salmonella-contaminated pork. pH and temperature stability experiments demonstrated that SLAM_phiST1N3 can endure swine industry processes and digestive conditions. In conclusion, SLAM_phiST1N3 demonstrates potential environmental impact as a substance for Salmonella prevention across various aspects of the swine industry chain.


Assuntos
Bacteriófagos , Salmonelose Animal , Fagos de Salmonella , Suínos , Animais , Humanos , Salmonella typhimurium , Bacteriófagos/fisiologia , Caenorhabditis elegans , Filogenia , Salmonelose Animal/prevenção & controle , Salmonelose Animal/microbiologia , Fagos de Salmonella/fisiologia
9.
J Microbiol Biotechnol ; 34(5): 1109-1118, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38563104

RESUMO

Probiotics, specifically Lacticaseibacillus rhamnosus, have garnered attention for their potential health benefits. This study focuses on evaluating the probiotic properties of candidate probiotics L. rhamnosus IDCC 3201 (3201) using the Caenorhabditis elegans surrogate animal model, a well-established in vivo system for studying host-bacteria interactions. The adhesive ability to the host's gastrointestinal tract is a crucial criterion for selecting potential probiotic bacteria. Our findings demonstrated that 3201 exhibits significantly higher adhesive capabilities compared with Escherichia coli OP50 (OP50), a standard laboratory food source for C. elegans and is comparable with the widely recognized probiotic L. rhamnosus GG (LGG). In lifespan assay, 3201 significantly increased the longevity of C. elegans compared with OP50. In addition, preconditioning with 3201 enhanced C. elegans immune response against four different foodborne pathogenic bacteria. To uncover the molecular basis of these effects, transcriptome analysis elucidated that 3201 modulates specific gene expression related to the innate immune response in C. elegans. C-type lectin-related genes and lysozyme-related genes, crucial components of the immune system, showed significant upregulation after feeding 3201 compared with OP50. These results suggested that preconditioning with 3201 may enhance the immune response against pathogens. Metabolome analysis revealed increased levels of fumaric acid and succinic acid, metabolites of the citric acid cycle, in C. elegans fed with 3201 compared with OP50. Furthermore, there was an increase in the levels of lactic acid, a well-known antimicrobial compound. This rise in lactic acid levels may have contributed to the robust defense mechanisms against pathogens. In conclusion, this study demonstrated the probiotic properties of the candidate probiotic L. rhamnosus IDCC 3201 by using multi-omics analysis.


Assuntos
Caenorhabditis elegans , Lacticaseibacillus rhamnosus , Longevidade , Probióticos , Animais , Caenorhabditis elegans/imunologia , Caenorhabditis elegans/microbiologia , Perfilação da Expressão Gênica , Imunidade Inata , Multiômica
10.
BMC Sports Sci Med Rehabil ; 16(1): 51, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38378630

RESUMO

BACKGROUND: Cardiac rehabilitation (CR) is recommended for patients with cardiovascular disease. However, the participation and completion rates for hospital-based CR are low, and home-based CR has been suggested as an alternative. This study aimed to develop a home-based CR program and assess the feasibility of the program over a 6-week period in patients with left ventricular dysfunction or a history of myocardial infarction. METHODS: This feasibility study consisted of two phases. The initial phase (Study 1) focused on developing the home-based exercise protocol. Systematic approaches to developing evidence-based home-based exercise intervention were implemented including systematic review, patient surveys, and expert consensus. Study 2 aimed to evaluate the feasibility of a 6-week home-based CR program that was based on the results of Study 1. Study 2 included two exercise education sessions and four telephone counseling sessions. During this stage of the exercise program, the participants exercised on two separate days and their experiences while performing the aerobic and resistance exercises were surveyed. Eight participants participated in Study 1 and 16 participated in Study 2. RESULTS: Participants expressed overall satisfaction with the exercise program in Study 1. Heart rate increased in response to exercise, but this did not correspond with perceived exertion. The aim of the home-based CR exercise program was for participants to achieve exercise goals (≥150 min/week of aerobic type exercises as well as at least twice weekly resistance exercise using own body weights). We aimed to increase compliance and adherence to the home-based CR program. In Study 2, 13 out of 16 participants (81.3%) completed the 6-week home-based CR program, with a participation rate of 100% in both exercise education and phone counseling sessions. Adherence to the home-based exercise protocol was 83.1% and no serious adverse events were observed. At the beginning of the study, only three out of 13 participants (23.1%) met the requirements for both aerobic and resistance exercises, but at the end of the 6-week program, 10 out of 13 participants (76.9%) fulfilled the requirements. CONCLUSION: The exercise program developed in this study was safe and feasible, and the 6-week home-based CR program was feasible for patients with cardiovascular disease without any reported adverse effects.

11.
Small ; 9(1): 115-23, 2013 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-23019062

RESUMO

Multi-walled carbon nanotubes (CNTs) can affect plant phenotype and the composition of soil microbiota. Tomato plants grown in soil supplemented with CNTs produce two times more flowers and fruit compared to plants grown in control soil. The effect of carbon nanotubes on microbial community of CNT-treated soil is determined by denaturing gradient gel electrophoresis and pyrosequencing analysis. Phylogenetic analysis indicates that Proteobacteria and Bacteroidetes are the most dominant groups in the microbial community of soil. The relative abundances of Bacteroidetes and Firmicutes are found to increase, whereas Proteobacteria and Verrucomicorbia decrease with increasing concentration of CNTs. The results of comparing diversity indices and species level phylotypes (OTUs) between samples showed that there is not a significant affect on bacterial diversity.


Assuntos
Nanotubos de Carbono/química , Reguladores de Crescimento de Plantas/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Animais , Eletroforese/métodos , Flores , Frutas , Humanos , Solanum lycopersicum/metabolismo , Nanotecnologia/métodos , Fenótipo , Filogenia , Fenômenos Fisiológicos Vegetais , RNA Ribossômico 16S/química , Análise de Sequência de DNA/métodos , Solo/análise , Microbiologia do Solo , Análise Espectral Raman/métodos
12.
Mol Biol Rep ; 40(6): 4115-22, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23640098

RESUMO

Insect molting is an important developmental process of metamorphosis, which is initiated by molting hormone. Molting includes the activation of dermal cells, epidermal cells separation, molting fluid secretion, the formation of new epidermis and old epidermis shed and other series of continuous processes. Polyphenol oxidases, dopa decarboxylase and acetyltransferase are necessary enzymes for this process. Traditionally, the dopa decarboxylase (BmDdc) was considered as an enzyme for epidermal layer's tanning and melanization. This work suggested that dopa decarboxylase is one set of the key enzymes in molting, which closely related with the regulation of ecdysone at the time of biological molting processes. The data showed that the expression peak of dopa decarboxylase in silkworm is higher during molting stage, and decreases after molting. The significant increase in the ecdysone levels of haemolymph was also observed in the artificially fed silkworm larvae with ecdysone hormone. Consistently, the dopa decarboxylase expression was significantly elevated compared to the control. BmDdc RNAi induced dopa decarboxylase expression obviously declined in the silkworm larvae, and caused the pupae appeared no pupation or incomplete pupation. BmDdc was mainly expressed and stored in the peripheral plasma area near the nucleus in BmN cells. In larval, BmDdc was mainly located in the brain and epidermis, which is consisted with its function in sclerotization and melanization. Overall, the results described that the dopa decarboxylase expression is regulated by the molting hormone, and is a necessary enzyme for the silkworm molting.


Assuntos
Bombyx/enzimologia , Dopa Descarboxilase/genética , Ecdisona/farmacologia , Animais , Western Blotting , Bombyx/efeitos dos fármacos , Bombyx/genética , Bombyx/crescimento & desenvolvimento , Dopa Descarboxilase/metabolismo , Ecdisona/administração & dosagem , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Larva/efeitos dos fármacos , Larva/genética , Especificidade de Órgãos/efeitos dos fármacos , Especificidade de Órgãos/genética , Transporte Proteico/efeitos dos fármacos , RNA de Cadeia Dupla/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
13.
Arch Insect Biochem Physiol ; 84(2): 78-89, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24038161

RESUMO

Molting in insects is regulated by molting hormones (ecdysteroids), which are also crucial to insect growth, development, and reproduction etc. The decreased ecdysteroid in titre results from enhanced ecdysteroid inactivation reactions including the formation of 3-epiecdyson under ecdysone oxidase and 3-dehydroecdysone 3α-reductase (3DE 3α-reductase). In this paper, we cloned and characterized 3-dehydroecdysone 3α-reductase (3DE 3α-reductase) in different tissues and developing stage of the silkworm, Bombyx mori L. The B. mori 3DE 3α-reductase cDNA contains an ORF 783 bp and the deduced protein sequence containing 260 amino acid residues. Analysis showed the deduced 3DE 3α-reductase belongs to SDR family, which has the NAD(P)-binding domain. Using the Escherichia coli, a high level expression of a fusion polypeptide band of approx. 33 kDa was observed. High transcription of 3DE 3α-reductase was mainly presented in the midgut and hemolymph in the third day of fifth instar larvae in silkworm. The expression of 3DE 3α-reductase at different stages of larval showed that the activity in the early instar was high, and then reduced in late instar. This is parallel to the changes of molting hormone titer in larval. 3DE 3α-reductase is key enzyme in inactivation path of ecdysteroid. The data elucidate the regulation of 3DE 3α-reductase in ecdyteroid titer of its targeting organs and the relationship between the enzyme and metamorphosis.


Assuntos
3-Hidroxiesteroide Desidrogenases/genética , Bombyx/metabolismo , Ecdisona/metabolismo , 3-Hidroxiesteroide Desidrogenases/metabolismo , Sequência de Aminoácidos , Animais , Bombyx/genética , Bombyx/crescimento & desenvolvimento , Clonagem Molecular , DNA Complementar/genética , Ecdisona/genética , Ecdisteroides , Escherichia coli , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Larva/metabolismo , Dados de Sequência Molecular , Muda
14.
J Anim Sci Technol ; 65(5): 1053-1064, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37969335

RESUMO

Melatonin, which is produced from tryptophan, exerts various biological functions, including the regulation of circadian rhythm, sedative agents, and antioxidant ability. Therefore, we conducted two experiments with early-weaned rats and pigs to investigate the antioxidant and sedative effects of melatonin. In the rat experiment, a total of 42 rats (21 days old) were used, and the antioxidant capacity was determined. Next, we used 120 early-weaned piglets (21 days old) to conduct a 5-week experiment to evaluate the reductive effect of melatonin on energy-wasting movement, including roaming and fight states. Dietary melatonin supplementation significantly improved growth in both rats and pigs compared to the control groups. Additionally, rats fed a melatonin-supplemented diet showed advanced antioxidant capacity with a decrease in hepatic malondialdehyde concentration compared to rats fed a basal diet. Moreover, dietary melatonin ingestion increased resting and feeding behaviors and reduced roaming and fight behaviors during Days 8-21 compared to the control diet group. Collectively, early weaned animals given dietary melatonin supplementation showed improved growth through upregulation of hepatic antioxidant capacity and minimization of energy-wasting behavior, including roaming and fight states, after pigs' social hierarchy establishment.

15.
J Microbiol Biotechnol ; 33(7): 915-925, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-36998149

RESUMO

Sarcopenia is defined as loss of muscle mass and strength due to aging. Recent studies show that sarcopenia may improve via the gut-muscle axis, suggesting that gut health may affect muscle phenotypes. In this study, we aimed to investigate the ability of Lactobacillus rhamnosus JY02 as a probiotic strain isolated from kimchi to alleviate sarcopenia. L. rhamnosus JY02-conditioned medium (CM) reduced dexamethasone (DEX)-induced myotube diameter atrophy and expression of muscle degradation markers (MuRF1 and atrogin-1) in C2C12 cells. The amelioration of sarcopenia was investigated by measuring body composition (lean mass), hand grip strength, myofibril size (using histological analysis), and mRNA and protein expression of muscle-related factors in a DEX-induced mouse model. The results of these analyses showed that L. rhamnosus JY02 supplementation promoted the production of muscle-enhancement markers (MHC Iß, MHC IIα, and Myo-D) and reduced both the production of muscle degradation markers and the symptoms of muscle atrophy (loss of lean mass and muscle strength). We also found decreased levels of pro-inflammatory cytokines (IL-6, IFN- γ) and increased levels of anti-inflammatory cytokines (IL-10) in the serum of DEX+JY02-administered mice compared to those in DEX-treated mice. Overall, these results suggest that L. rhamnosus JY02 is a potent probiotic supplement that prevents sarcopenia by suppressing muscle atrophy.


Assuntos
Lacticaseibacillus rhamnosus , Sarcopenia , Camundongos , Animais , Sarcopenia/induzido quimicamente , Sarcopenia/prevenção & controle , Dexametasona/efeitos adversos , Modelos Animais de Doenças , Força da Mão , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/prevenção & controle
16.
J Bacteriol ; 194(1): 176-84, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22020637

RESUMO

The Prevotella ruminicola 23 genome encodes three different glutamine synthetase (GS) enzymes: glutamine synthetase I (GSI) (ORF02151), GSIII-1 (ORF01459), and GSIII-2 (ORF02034). GSI, GSIII-1, and GSIII-2 have each been heterologously expressed in and purified from Escherichia coli. The subunit molecular mass of GSI was 56 kDa, while GSIII-1 and GSIII-2 were both 83 kDa. Optimal conditions for γ-glutamyl transferase activity were found to be 35°C at pH 5.6 with 0.25 mM Mn(2+) ions (GSI) or 37°C at pH 6.0 (GSIII-1 and GSIII-2) with 0.50 to 1.00 mM Mn(2+) ions. GSIII biosynthetic activity was found to be optimal at 50 to 60°C and pH 6.8 to 7.0 with 10 mM Mn(2+) ions, while GSI displayed no GS biosynthetic activity. Kinetic analysis revealed K(m) values for glutamate and ammonium as well as for hydrolysis of ATP to be 8.58, 0.48, and 1.91 mM, respectively, for GSIII-1 and 1.72, 0.43, and 2.65 mM, respectively, for GSIII-2. A quantitative reverse transcriptase PCR assay (qRT-PCR) revealed GSIII-2 to be significantly induced by high concentrations of ammonia, and this corresponded with increases in measured GS activity. Collectively, these results show that both GSIII enzymes in P. ruminicola 23 are functional and indicate that GSIII-2, flanked by GOGAT (gltB and gltD genes), plays an important role in the acquisition and metabolism of ammonia, particularly under nonlimiting ammonia growth conditions.


Assuntos
Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Glutamato-Amônia Ligase/metabolismo , Prevotella ruminicola/enzimologia , Sequência de Aminoácidos , Mapeamento Cromossômico , Cromossomos Bacterianos , Clonagem Molecular , Glutamato-Amônia Ligase/classificação , Glutamato-Amônia Ligase/genética , Anotação de Sequência Molecular , Dados de Sequência Molecular , Filogenia , Prevotella ruminicola/genética , Prevotella ruminicola/metabolismo
17.
Anaerobe ; 18(3): 310-20, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22321759

RESUMO

The indigenous human intestinal microbiota could be disrupted by residues of antibiotics in foods as well as therapeutically administered antibiotics to humans. These disruptions may lead to adverse health outcomes. To observe the possible impact of residues of antibiotics at concentrations below therapeutic levels on human intestinal microbiota, we performed studies using in vitro cultures of fecal suspensions from three individuals with 10 different concentrations (0, 0.1, 0.5, 1, 5, 10, 15, 25, 50 and 150 µg/ml) of the fluoroquinolone, enrofloxacin. The bacterial communities of the control and enrofloxacin dosed fecal samples were analyzed by denaturing gradient gel electrophoresis (DGGE) and pyrosequencing. In addition, changes of functional gene expression were analyzed by a pyrosequencing-based random whole-community mRNA sequencing method. Although each individual had a unique microbial composition, the communities of all individuals were affected by enrofloxacin. The proportions of two phyla, namely, Bacteroidetes and Proteobacteria, were significantly reduced with increasing concentrations of enrofloxacin exposure, while the proportion of Firmicutes increased. Principal Coordinate Analysis (PCoA) using the Fast UniFrac indicated that the community structures of intestinal microbiota were shifted by enrofloxacin. Most of the mRNA transcripts and the anti-microbial drug resistance genes increased with increasing concentrations of enrofloxacin. 16S rRNA gene pyrosequencing of control and enrofloxacin treated fecal suspensions provided valuable information of affected bacterial taxa down to the species level, and the community transcriptomic analyses using mRNA revealed the functional gene expression responses of the changed bacterial communities by enrofloxacin.


Assuntos
Antibacterianos/farmacologia , Fluoroquinolonas/farmacologia , Perfilação da Expressão Gênica , Metagenoma/efeitos dos fármacos , Bacteroidetes/efeitos dos fármacos , Bacteroidetes/genética , Bacteroidetes/metabolismo , Análise por Conglomerados , Eletroforese em Gel de Gradiente Desnaturante , Farmacorresistência Bacteriana/genética , Enrofloxacina , Fezes/microbiologia , Genes Bacterianos , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/genética , Bactérias Gram-Positivas/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Filogenia , Proteobactérias/efeitos dos fármacos , Proteobactérias/genética , Proteobactérias/metabolismo , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Ribossômico 16S/genética , Análise de Sequência de RNA
18.
J Biomed Biotechnol ; 2011: 838040, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21811382

RESUMO

A stable intestinal microbiota is important in maintaining human physiology and health. Although there have been a number of studies using in vitro and in vivo approaches to determine the impact of diet and xenobiotics on intestinal microbiota, there is no consensus for the best in vitro culture conditions for growth of the human gastrointestinal microbiota. To investigate the dynamics and activities of intestinal microbiota, it is important for the culture conditions to support the growth of a wide range of intestinal bacteria and maintain a complex microbial community representative of the human gastrointestinal tract. Here, we compared the bacterial community in three culture media: brain heart infusion broth and high- and low-carbohydrate medium with different growth supplements. The bacterial community was analyzed using denaturing gradient gel electrophoresis (DGGE), pyrosequencing and real-time PCR. Based on the molecular analysis, this study indicated that the 3% fecal inoculum in low-concentration carbohydrate medium with 1% autoclaved fecal supernatant provided enhanced growth conditions to conduct in vitro studies representative of the human intestinal microbiota.


Assuntos
Bactérias/crescimento & desenvolvimento , Técnicas de Cultura de Células/métodos , Trato Gastrointestinal/microbiologia , Metagenoma , Modelos Biológicos , Bactérias/genética , Bactérias/isolamento & purificação , Meios de Cultura/química , DNA Bacteriano/genética , Eletroforese em Gel de Gradiente Desnaturante , Fezes/microbiologia , Humanos , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
19.
ACS Appl Mater Interfaces ; 13(1): 219-232, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33375776

RESUMO

The application of biodegradable and biocompatible materials to triboelectric nanogenerators (TENGs) for harvesting energy from motions of the human body has been attracting significant research interest. Herein, we report diatom bio-silica as a biomaterial additive to enhance the output performance of cellulose nanofibril (CNF)-based TENGs. Diatom frustules (DFs), which are tribopositive bio-silica having hierarchically porous three-dimensional structures and high surface area, have hydrogen bonds with CNFs, resulting in enhanced electron-donating capability and a more roughened surface of the DF-CNF composite film. Hence, DFs were applied to form a tribopositive composite film with CNFs. The DF-CNF biocomposite film is mechanically strong, electron-rich, low-cost, and frictionally rough. The DF-CNF TENG showed an output voltage of 388 V and time-averaged power of 85.5 mW/m2 in the contact-separation mode with an efficient contact area of 4.9 cm2, and the generated power was sufficient for instantaneous illumination of 102 light-emitting diodes. In addition, a cytotoxicity study and biocompatibility tests on rabbit skin suggested that the DF-CNF composite was biologically safe. Moreover, a practical application of the DF-CNF TENG was examined with a self-powered smart mask for human breathing monitoring. This study not only suggests high output performance of biomaterial-based TENGs but also presents the diverse advantages of the DFs in human body-related applications such as self-powered health monitoring masks, skin-attachable power generators, and tactile feedback systems.


Assuntos
Celulose/química , Fontes de Energia Elétrica , Máscaras , Nanofibras/química , Dióxido de Silício/química , Dispositivos Eletrônicos Vestíveis , Animais , Testes Respiratórios/instrumentação , Celulose/toxicidade , Diatomáceas/química , Eucalyptus/química , Humanos , Masculino , Monitorização Fisiológica/instrumentação , Nanofibras/toxicidade , Coelhos , Dióxido de Silício/toxicidade , Pele/efeitos dos fármacos , Resistência à Tração
20.
J Anim Sci Technol ; 62(2): 227-238, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32292930

RESUMO

Use of raw feedstuffs for livestock is limited by low digestibility. Recently, fermentation of feedstuffs has been highlighted as a new way to improve nutrient absorption through the production of organic acids using inoculated microorganisms, which can also play a probiotic role. However, standard procedures for feedstuff fermentation have not been clearly defined because the process is influenced by climatic variation, and an analytical standard for fermented feedstuffs is lacking. This study aimed to evaluate the microbiological and biochemical changes of feedstuffs during fermentation at temperatures corresponding to different seasons (10°C, 20°C, 30°C, and 40°C). We also investigated the effects of yeast, lactic acid bacteria (LAB), and Bacillus spp. on fermentation and determined the results of their interactions during fermentation. The viable cells were observed within 8 days in single-strain fermentation. However, when feedstuffs were inoculated with a culture of mixed strains, LAB were predominant at low temperatures (10°C and 20°C), while Bacillus spp. was predominant at high temperatures (30°C and 40°C). A significant drop in pH from 6.5 to 4.3 was observed when LAB was the dominant strain in the culture, which correlated with the concentrations of lactic acid. Slight ethanol production was detected above 20°C regardless of the incubation temperature, suggesting active metabolism of yeast, despite this organism making up a marginal portion of the microbes in the mixed culture. These results suggested that fermentation temperature significantly affects microbiological profiles and biochemical parameters, such as pH and the lactic acid concentration, of fermented feedstuffs. Our data provide valuable information for the determination of industrial standards for fermented feedstuffs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA