Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 32(9): 16235-16247, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38859256

RESUMO

Radiative cooling is an energy-efficient technology without consuming power. Depending on their use, radiative coolers (RCs) can be designed to be either solar-transparent or solar-opaque, which requires complex spectral characteristics. Our research introduces a novel deep learning-based inverse design methodology for creating thin-film type RCs. Our deep learning algorithm determines the optimal optical constants, material volume ratios, and particle size distributions for oxide/nitride nanoparticle-embedded polyethylene films. It achieves the desired optical properties for both types of RCs through Mie Scattering and effective medium theory. We also assess the optical and thermal performance of each RCs.

2.
Adv Sci (Weinh) ; 10(27): e2302701, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37485641

RESUMO

A huge concern on global climate/energy crises has triggered intense development of radiative coolers (RCs), which are promising green-cooling technologies. The continuous efforts on RCs have fast-tracked notable energy-savings by minimizing solar absorption and maximizing thermal emission. Recently, in addition to spectral optimization, ceramic-based thermally insulative RCs are reported to improve thermoregulation by suppressing heat gain from the surroundings. However, a high temperature co-firing process of ceramic-based thick film inevitably results in a large mismatch of structural parameters between designed and fabricated components, thereby breaking spectral optimization. Here, this article proposes a scalable, non-shrinkable, patternable, and thermally insulative ceramic RC (SNPT-RC) using a roll-to-roll process, which can fill a vital niche in the field of radiative cooling. A stand-alone SNPT-RC exhibits excellent thermal insulation (≈0.251 W m-1  K-1 ) with flame-resistivity and high solar reflectance/long-wave emissivity (≈96% and 92%, respectively). Alternate stacks of intermediate porous alumina/borosilicate (Al2 O3 -BS) layers not only result in outstanding thermal and spectral characteristics, causing excellent sub-ambient cooling (i.e., 7.05 °C cooling), but also non-shrinkable feature. Moreover, a perforated SNPT-RC demonstrates its versatility as a breathable radiative cooling shade and as a semi-transparent window, making it a highly promising technology for practical deployment in energy-saving architecture.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA