Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(17): e2307089, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38185784

RESUMO

Composites comprising copper-doped zinc sulfide phosphor microparticles embedded in polydimethylsiloxane (ZnS:Cu-PDMS) have received significant attention over the past decade because of their bright and durable mechanoluminescence (ML); however, the underlying mechanism of this unique ML remains unclear. This study reports empirical and theoretical findings that confirm this ML is an electroluminescence (EL) of the ZnS:Cu phosphor induced by the triboelectricity generated at the ZnS:Cu microparticle-PDMS matrix interface. ZnS:Cu microparticles that exhibit bright ML are coated with alumina, an oxide with strong positive triboelectric properties; the contact separation between this oxide coating and PDMS, a polymer with strong negative triboelectric properties, produces sufficient interfacial triboelectricity to induce EL in ZnS:Cu microparticles. The ML of ZnS:Cu-PDMS composites varies on changing the coating material, exhibiting an intensity that is proportional to the amount of interfacial triboelectricity generated in the system. Finally, based on these findings, a mechanism that explains the ML of phosphor-polymer elastic composites (interfacial triboelectric field-driven alternating-current EL model) is proposed in this study. It is believed that understanding this mechanism will enable the development of new materials (beyond ZnS:Cu-PDMS systems) with bright and durable ML.

2.
Phys Chem Chem Phys ; 24(46): 28250-28256, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36382534

RESUMO

In energy conversion techniques, two-dimensional (2D) thermoelectric materials with high performance are strongly required. This study scrutinizes the electronic and thermoelectric properties of 2D single-layer (1L) ZrTeSe4 based on first-principles calculations combined with Boltzmann transport theory. First-principles molecular dynamics simulations and phonon calculations confirm the thermodynamic stability of 1L-ZrTeSe4. Furthermore, the electron mobility of 1L-ZrTeSe4 is calculated to be ∼5706 cm2 V-1 s-1, which is much higher than that of the typical 2D semiconducting materials. Intriguingly, the calculated lattice thermal conductivity of 1L-ZrTeSe4 is found to be 3.16 W m-1 K-1 at room temperature, which is relatively smaller than that of 2D transition metal dichalcogenides. The maximum figure of merit ZT of 1L-ZrTeSe4 at 900 K is ∼0.8 for both p- and n-type doping at optimal carrier concentrations. As ZT could be improved through the manipulation of its electronic structure, this is an important clue indicating the enormous potential of 1L-ZrTeSe4 in thermoelectric application.

3.
Small ; 16(52): e2005445, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33241618

RESUMO

Thin film fabrication of 2D layered organic-inorganic hybrid perovskites (2D-OIHPs) for spintronic applications has been attempted using solution-based process like Langmuir-Blodgett technique. However, monolayer or few-layered 2D magnets are not yet realized, even though a wide spectrum of 2D Ruddlesden-Popper (RP) OIHPs are known as quasi-2D Heisenberg magnets in bulk compounds. Here, chemical exfoliation by solvent engineering is applied to successfully synthesize large-sized, few unit-cell-thick 2D RP-OIHPs. Comprehensive structural characterization reveals that binary co-solvents with high relative polarity in spin coating technique are the most effective among nine kinds of solvents. Above all, this enables few-layered 2D RP-OIHP ultrathin films sustaining their intrinsic magnetic order. It is found that XY-like magnetic anisotropy driven by Jahn-Teller effect responsible for ferromagnetism in seven-layered (C6 H5 CH2 CH2 NH3 )2 CuCl4 ultrathin films remains very robust, whereas Ising-like dipolar anisotropy responsible for canted antiferromagnetism in ten-layered (C6 H5 CH2 CH2 NH3 )2 MnCl4 ultrathin films is greatly reduced. It is expected that ferromagnetism even at monolayer limit should be possible by means of further sophisticated solvent engineering as long as Jahn-Teller effect is active. The chemical exfoliation using solvent engineering unambiguously can bring about a new breakthrough in the development of 2D RP-OIHP van der Waals magnets for ultrahigh energy-efficient spintronic, opto-spintronic devices.

4.
Nano Lett ; 16(7): 4438-46, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27348607

RESUMO

The interfacial Dzyaloshinskii-Moriya interaction (DMI) is intimately related to the prospect of superior domain-wall dynamics and the formation of magnetic skyrmions. Although some experimental efforts have been recently proposed to quantify these interactions and the underlying physics, it is still far from trivial to address the interfacial DMI. Inspired by the reported tilt of the magnetization of the side edge of a thin film structure, we here present a quasi-static, straightforward measurement tool. By using laterally asymmetric triangular-shaped microstructures, it is demonstrated that interfacial DMI combined with an in-plane magnetic field yields a unique and significant shift in magnetic hysteresis. By systematic variation of the shape of the triangular objects combined with a droplet model for domain nucleation, a robust value for the strength and sign of interfacial DMI is obtained. This method gives immediate and quantitative access to DMI, enabling a much faster exploration of new DMI systems for future nanotechnology.

5.
Micromachines (Basel) ; 15(1)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38258149

RESUMO

To adsorb and remove formaldehyde, which is a harmful volatile organic chemical (VOC) detected indoors, an alkylamine was introduced into the substrate as a formaldehyde adsorbent. In this study, Tetraethylenepentaamine (TEPA) was introduced into the mesoporous silica using the amine impregnation method. Since the impregnated alkylamine can block the pores of the silica substrate, the pore size and pore volume are very important factors for its use as a substrate for an adsorbent. Focusing on the substrate's pore properties, Santa Barbara Amorphous-15 (SBA-15) was chosen as a conventional one-dimensional pore-structured mesoporous silica, and dendritic mesoporous silica (DMS) as a three-dimensional pore-structured mesoporous silica. To 1 g each of silica substrate DMS and SBA-15, 0, 0.5, 1.5, and 2.5 g of TEPA were introduced. A fixed concentration and amount of formaldehyde gas was flowed through the adsorbent and then the adsorbent was changed to the 2,4-Dinitrophenylhydrazine (2,4-DNPH) cartridge to adsorb the remaining formaldehyde. According to the methods recommended by the World Health Organization (WHO) and National Institute for Occupational Safety & Health (NIOSH), the formaldehyde captured by 2,4-DNPH was analyzed using high-performance liquid chromatography (HPLC). A comparison of DMS and SBA-15 in the amine impregnation method shows that not only surface area, but also large pore size and high pore volume, contribute to the formaldehyde adsorption ability.

6.
Nanoscale ; 15(35): 14476-14487, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37605886

RESUMO

The analog resistive switching properties of amorphous InGaZnOx (a-IGZO)-based devices with Al as the top and bottom electrodes and an Al-Ox interface layer inserted on the bottom electrode are presented here. The influence of the electrode deposition rate on the surface roughness was established and proposed as the cause of the observed unusual anomalous switching effects. The DC electrical characterization of the optimized Al/a-IGZO/AlOx/Al devices revealed an analog resistive switching with a satisfactory value for retention levels, but the endurance was found to decrease after 200 cycles. The predominant conduction mechanism in these devices was found to be thermionic emission. An in-depth analysis was performed to explore the relaxation kinetics of the device and it was found that the current has a lower decay rate. The current level stability was tested and found reliable even after 5 h. The cost-effective and precious metal-free nature of the a-IGZO memristor investigated in this study makes it a highly desirable candidate for neuromorphic computing applications.

7.
Materials (Basel) ; 16(19)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37834555

RESUMO

Magnetic heterojunction structures with a suppressed interfacial Dzyaloshinskii-Moriya interaction and a sustainable long-range interlayer exchange coupling are achieved with an ultrathin platinum insertion layer. The systematic inelastic light scattering spectroscopy measurements indicate that the insertion layer restores the symmetry of the system and, then, the interfacial Dzyaloshinskii-Moriya interaction, which can prevent the identical magnetic domain wall motions, is obviously minimized. Nevertheless, the strong interlayer exchange coupling of the system is maintained. Consequently, synthetic ferromagnetic and antiferromagnetic exchange couplings as a function of the ruthenium layer thickness are observed as well. Therefore, these optimized magnetic multilayer stacks can avoid crucial issues, such as domain wall tilting and position problems, for next-generation spintronic logic applications. Moreover, the synthetic antiferromagnetic coupling can open a new path to develop a radically different NOT gate via current-induced magnetic domain wall motions and inversions.

8.
Sci Rep ; 12(1): 19816, 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36396967

RESUMO

The oxygen vacancies and hydrogen in oxide semiconductors are regarded as the primary sources of charge carriers and various studies have investigated the effect of hydrogen on the properties of oxide semiconductors. However, the carrier generation mechanism between hydrogen and oxygen vacancies in an a-IGZO semiconductor has not yet been clearly examined. In this study we investigated the effect of hydrogen and the variation mechanisms of electrical properties of a thin film supplied with hydrogen from the passivation layer. SiOx and SiNx, which are used as passivation or gate insulator layers in the semiconductor process, respectively, were placed on the top or bottom of an a-IGZO semiconductor to determine the amount of hydrogen penetrating the a-IGZO active layer. The hydrogen diffusion depth was sufficiently deep to affect the entire thin semiconductor layer. A large amount of hydrogen in SiNx directly affects the electrical resistivity of a-IGZO semiconductor, whereas in SiOx, it induces a different behavior from that in SiNx, such as inducing an oxygen reaction and O-H bond behavior change at the interface of an a-IGZO semiconductor. Moreover, the change in electrical resistivity owing to the contribution of free electrons could be varied based on the bonding method of hydrogen and oxygen.

9.
Materials (Basel) ; 14(9)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33946711

RESUMO

As novel applications of oxide semiconductors are realized, various structural devices and integrated circuits are being proposed, and the gate-overlay defect phenomenon is becoming more diverse in its effects. Herein, the electrical properties of the transistor that depend on the geometry between the gate and the semiconductor layer are analyzed, and the specific phenomena associated with the degree of overlap are reproduced. In the semiconductor layer, where the gate electrode is not overlapped, it is experimentally shown that a dual current is generated, and the results of 3D simulations confirm that the magnitude of the current increases as the parasitic current moves away from the gate electrode. The generation and path of the parasitic current are then represented visually through laser-enhanced 2D transport measurements; consequently, the flow of the dual current in the transistor is verified to be induced by the electrical potential imbalance in the semiconductor active layer, where the gate electrodes do not overlap.

10.
J Phys Condens Matter ; 33(1): 015803, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33052891

RESUMO

Non-equilibrium domain wall dynamics on a perpendicularly magnetized nanowire manipulated by the transverse magnetic field pulse are numerically investigated. We systematically observe the large displacements of the chiral domain wall and the domain wall tilting angles generated by Dzyaloshinskii-Moriya interaction during the competition between the precession torque and the magnetic damping process. The magnetic-property-dependent domain wall displacements exhibit that the lower magnetic damping constants and Dzyaloshinskii-Moriya energy densities generate the longer transition times and the significant larger domain wall displacements for the non-equilibrium magnetization dynamics. Compare with the spin-polarized-current-driven domain wall dynamics, the transverse magnetic field pulses guarantee faster domain wall movements without Walker breakdown and lower energy consumptions because it is free from the serious Joule heating issue. Finally, we demonstrate successive chiral domain wall displacements, which are necessary to develop multilevel resistive memristors for next-generation artificial intelligent devices based on magnetic domain wall motions.

11.
ACS Nano ; 14(11): 16114-16121, 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33140970

RESUMO

Quantum confinements, especially quantum in narrow wells, have been investigated because of their controllability over electrical parameters. For example, quantum dots can emit a variety of photon wavelengths even for the same material depending on their particle size. More recently, the research into two-dimensional (2D) materials has shown the availability of several quantum mechanical phenomenon confined within a sheet of materials. Starting with the gapless semimetal properties of graphene, current research has begun into the excitons and their properties within 2D materials. Even for simple 2D systems, experimental results often offer surprising results, unexpected from traditional studies. We investigated a coupled quantum well system using 2D hexagonal boron nitride (hBN) barrier as well as 2D tungsten disulfide (WS2) semiconductor arranged in stacked structures to study the various 2D to 2D interactions. We determined that for hexagonal boron nitride-tungsten disulfide (hBN/WS2) quantum well stacks, the interaction between successive wells resulted in decreasing bandgap, and the effect was pronounced even over a large distance of up to four stacks. Additionally, we observed that a single layer of isolating hBN barriers significantly reduces interlayer interaction between WS2 layers, while still preserving the interwell interactions in the alternative hBN/WS2 structure. The methods we used for the study of coupled quantum wells here show a method for determining the respective exciton energy levels and trion energy levels within 2D materials and 2D materials-based structures. Renormalization energy levels are the key in understanding conductive and photonic properties of stacked 2D materials.

12.
Sci Rep ; 9(1): 11977, 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31427668

RESUMO

The reduction in current ability accompanied by the hump phenomenon in oxide semiconductor thin-film transistors to which high DC voltages and AC drive voltages are applied has not been studied extensively, although it is a significant bottleneck in the manufacture of integrated circuits. Here, we report on the origin of the hump and current drop in reliability tests caused by the degradation in the oxide semiconductor during a circuit driving test. The hump phenomenon and current drop according to two different driving stresses were verified. Through a numerical computational simulation, we confirmed that this issue can be caused by an additional "needle", a shallow (~0.2 eV) and narrow (<0.1 eV), defect state near the conduction band minimum (CBM). This is also discussed in terms of the dual current path caused by leakage current in the channel edge.

13.
Sci Rep ; 8(1): 4661, 2018 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-29549304

RESUMO

Two dimensional layered organic-inorganic halide perovskites offer a wide variety of novel functionality such as solar cell and optoelectronics and magnetism. Self-assembly of these materials using solution process (ex. spin coating) makes crystalline thin films synthesized at ambient environment. However, flexibility of organic layer also poses a structure stability issue in perovskite thin films against environment factors (ex. moisture). In this study, we investigate the effect of solvents and moisture on structure and property in the (C6H5(CH2)2NH3)2(Cu, Mn)Cl4 (Cu-PEA, Mn-PEA) perovskite thin films spin-coated on Si wafer using three solvents (H2O, MeOH, MeOH + H2O). A combination of x-ray diffraction (XRD) and x-ray absorption spectroscopy (XAS) show that relative humidity (RH) has a profound effect on perovskite thin films during sample synthesis and storage, depending on the kind of solvent used. The ones prepared using water (Cu-PEA:H2O, Mn-PEA:H2O) show quite different behavior from the other cases. According to time-dependent XRD, reversible crystalline-amorphous transition takes place depending on RH in the former cases, whereas the latter cases relatively remain stable. It also turns out from XAS that Mn-PEA thin films prepared with solvents such as MeOH and MeOH + H2O are disordered to the depth of about 4 nm from surface.

14.
ACS Appl Mater Interfaces ; 10(35): 29757-29765, 2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-30033726

RESUMO

Transition metal oxide-based memristors have widely been proposed for applications toward artificial synapses. In general, memristors have two or more electrically switchable stable resistance states that device researchers see as an analogue to the ion channels found in biological synapses. The mechanism behind resistive switching in metal oxides has been divided into electrochemical metallization models and valence change models. The stability of the resistance states in the memristor vary widely depending on: oxide material, electrode material, deposition conditions, film thickness, and programming conditions. So far, it has been extremely challenging to obtain reliable memristors with more than two stable multivalued states along with endurances greater than ∼1000 cycles for each of those states. Using an oxygen plasma-assisted sputter deposition method of noble metal electrodes, we found that the metal-oxide interface could be deposited with substantially lower interface roughness observable at the nanometer scale. This markedly improved device reliability and function, allowing for a demonstration of memristors with four completely distinct levels from ∼6 × 10-6 to ∼4 × 10-8 S that were tested up to 104 cycles per level. Furthermore through a unique in situ transmission electron microscopy study, we were able to verify a redox reaction-type model to be dominant in our samples, leading to the higher degree of electrical state controllability. For solid-state synapse applications, the improvements to electrical properties will lead to simple device structures, with an overall power and area reduction of at least 1000 times when compared to SRAM.

15.
Nat Commun ; 6: 7635, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26154986

RESUMO

In magnetic multilayer systems, a large spin-orbit coupling at the interface between heavy metals and ferromagnets can lead to intriguing phenomena such as the perpendicular magnetic anisotropy, the spin Hall effect, the Rashba effect, and especially the interfacial Dzyaloshinskii-Moriya (IDM) interaction. This interfacial nature of the IDM interaction has been recently revisited because of its scientific and technological potential. Here we demonstrate an experimental technique to straightforwardly observe the IDM interaction, namely Brillouin light scattering. The non-reciprocal spin wave dispersions, systematically measured by Brillouin light scattering, allow not only the determination of the IDM energy densities beyond the regime of perpendicular magnetization but also the revelation of the inverse proportionality with the thickness of the magnetic layer, which is a clear signature of the interfacial nature. Altogether, our experimental and theoretical approaches involving double time Green's function methods open up possibilities for exploring magnetic hybrid structures for engineering the IDM interaction.

16.
Nat Commun ; 5: 3429, 2014 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-24663150

RESUMO

Magnetic storage and logic devices based on magnetic domain wall motion rely on the precise and synchronous displacement of multiple domain walls. The conventional approach using magnetic fields does not allow for the synchronous motion of multiple domains. As an alternative method, synchronous current-induced domain wall motion was studied, but the required high-current densities prevent widespread use in devices. Here we demonstrate a radically different approach: we use out-of-plane magnetic field pulses to move in-plane domains, thus combining field-induced magnetization dynamics with the ability to move neighbouring domain walls in the same direction. Micromagnetic simulations suggest that synchronous permanent displacement of multiple magnetic walls can be achieved by using transverse domain walls with identical chirality combined with regular pinning sites and an asymmetric pulse. By performing scanning transmission X-ray microscopy, we are able to experimentally demonstrate in-plane magnetized domain wall motion due to out-of-plane magnetic field pulses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA