Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
J Am Chem Soc ; 146(20): 13817-13835, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38716885

RESUMO

The reaction of Li[(TAML)CoIII]·3H2O (TAML = tetraamido macrocyclic tetraanionic ligand) with iodosylbenzene at 253 K in acetone in the presence of redox-innocent metal ions (Sc(OTf)3 and Y(OTf)3) or triflic acid affords a blue species 1, which is converted reversibly to a green species 2 upon cooling to 193 K. The electronic structures of 1 and 2 have been determined by combining advanced spectroscopic techniques (X-band electron paramagnetic resonance (EPR), electron nuclear double resonance (ENDOR), X-ray absorption spectroscopy/extended X-ray absorption fine structure (XAS/EXAFS), and magnetic circular dichroism (MCD)) with ab initio theoretical studies. Complex 1 is best represented as an S = 1/2 [(Sol)(TAML•+)CoIII---OH(LA)]- species (LA = Lewis/Brønsted acid and Sol = solvent), where an S = 1 Co(III) center is antiferromagnetically coupled to S = 1/2 TAML•+, which represents a one-electron oxidized TAML ligand. In contrast, complex 2, also with an S = 1/2 ground state, is found to be multiconfigurational with contributions of both the resonance forms [(H-TAML)CoIV═O(LA)]- and [(H-TAML•+)CoIII═O(LA)]-; H-TAML and H-TAML•+ represent the protonated forms of TAML and TAML•+ ligands, respectively. Thus, the interconversion of 1 and 2 is associated with a LA-associated tautomerization event, whereby H+ shifts from the terminal -OH group to TAML•+ with the concomitant formation of a terminal cobalt-oxo species possessing both singlet (SCo = 0) Co(III) and doublet (SCo = 1/2) Co(IV) characters. The reactivities of 1 and 2 at different temperatures have been investigated in oxygen atom transfer (OAT) and hydrogen atom transfer (HAT) reactions to compare the activation enthalpies and entropies of 1 and 2.

2.
J Magn Reson Imaging ; 59(4): 1218-1228, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37477575

RESUMO

BACKGROUND: While breast ultrasound (US) is a useful tool for diagnosing breast masses, it can entail false-positive biopsy results because of some overlapping features between benign and malignant breast masses and subjective interpretation. PURPOSE: To evaluate the performance of conductivity imaging for reducing false-positive biopsy results related to breast US, as compared to diffusion-weighted imaging (DWI) and abbreviated MRI consisting of one pre- and one post-contrast T1-weighted imaging. STUDY TYPE: Prospective. SUBJECTS: Seventy-nine women (median age, 44 years) with 86 Breast Imaging Reporting and Data System (BI-RADS) category 4 masses as detected by breast US. FIELD STRENGTH/SEQUENCE: 3-T, T2-weighted turbo spin echo sequence, DWI, and abbreviated contrast-enhanced MRI (T1-weighted gradient echo sequence). ASSESSMENT: US-guided biopsy (reference standard) was obtained on the same day as MRI. The maximum and mean conductivity parameters from whole and single regions of interest (ROIs) were measured. Apparent diffusion coefficient (ADC) values were obtained from an area with the lowest signal within a lesion on the ADC map. The performance of conductivity, ADC, and abbreviated MRI for reducing false-positive biopsies was evaluated using the following criteria: lowest conductivity and highest ADC values among malignant breast lesions and BI-RADS categories 2 or 3 on abbreviated MRI. STATISTICAL TESTS: One conductivity parameter with the maximum area under the curve (AUC) from receiver operating characteristics was selected. A P-value <0.05 was considered statistically significant. RESULTS: US-guided biopsy revealed 65 benign lesions and 21 malignant lesions. The mean conductivity parameter of the single ROI method was selected (AUC = 0.74). Considering conductivity (≤0.10 S/m), ADC (≥1.60 × 10-3 mm2 /sec), and BI-RADS categories 2 or 3 reduced false-positive biopsies by 23% (15 of 65), 38% (25 of 65), and 43% (28 of 65), respectively, without missing malignant lesions. DATA CONCLUSION: Conductivity imaging may show lower performance than DWI and abbreviated MRI in reducing unnecessary biopsies. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 2.


Assuntos
Neoplasias da Mama , Meios de Contraste , Feminino , Humanos , Adulto , Estudos Prospectivos , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Biópsia , Biópsia Guiada por Imagem , Diagnóstico Diferencial , Neoplasias da Mama/diagnóstico por imagem , Sensibilidade e Especificidade
3.
Angew Chem Int Ed Engl ; 63(21): e202401433, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38433099

RESUMO

We introduce the heterocumulene ligand [(Ad)NCC(tBu)]- (Ad=1-adamantyl (C10H15), tBu=tert-butyl, (C4H9)), which can adopt two forms, the azaalleneyl and ynamide. This ligand platform can undergo a reversible chelotropic shift using Brønsted acid-base chemistry, which promotes an unprecedented spin-state change of the [VIII] ion. These unique scaffolds are prepared via addition of 1-adamantyl isonitrile (C≡NAd) across the alkylidyne in complexes [(BDI)V≡CtBu(OTf)] (A) (BDI-=ArNC(CH3)CHC(CH3)NAr), Ar=2,6-iPr2C6H3) and [(dBDI)V≡CtBu(OEt2)] (B) (dBDI2-=ArNC(CH3)CHC(CH2)NAr). Complex A reacts with C≡NAd, to generate the high-spin [VIII] complex with a κ1-N-ynamide ligand, [(BDI)V{κ1-N-(Ad)NCC(tBu)}(OTf)] (1). Conversely, B reacts with C≡NAd to generate a low-spin [VIII] diamagnetic complex having a chelated κ2-C,N-azaalleneyl ligand, [(dBDI)V{κ2-N,C-(Ad)NCC(tBu)}] (2). Theoretical studies have been applied to better understand the mechanism of formation of 2 and the electronic reconfiguration upon structural rearrangement by the alteration of ligand denticity between 1 and 2.

4.
Hum Brain Mapp ; 44(15): 4986-5001, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37466309

RESUMO

Magnetic resonance electrical properties tomography (MR-EPT) is a non-invasive measurement technique that derives the electrical properties (EPs, e.g., conductivity or permittivity) of tissues in the radiofrequency range (64 MHz for 1.5 T and 128 MHz for 3 T MR systems). Clinical studies have shown the potential of tissue conductivity as a biomarker. To date, model-based conductivity reconstructions rely on numerical assumptions and approximations, leading to inaccuracies in the reconstructed maps. To address such limitations, we propose an artificial neural network (ANN)-based non-linear conductivity estimator trained on simulated data for conductivity brain imaging. Network training was performed on 201 synthesized T2-weighted spin-echo (SE) data obtained from the finite-difference time-domain (FDTD) electromagnetic (EM) simulation. The dataset was composed of an approximated T2-w SE magnitude and transceive phase information. The proposed method was tested three in-silico and in-vivo on two volunteers and three patients' data. For comparison purposes, various conventional phase-based EPT reconstruction methods were used that ignore B 1 + magnitude information, such as Savitzky-Golay kernel combined with Gaussian filter (S-G Kernel), phase-based convection-reaction EPT (cr-EPT), magnitude-weighted polynomial-fitting phase-based EPT (Poly-Fit), and integral-based phase-based EPT (Integral-based). From the in-silico experiments, quantitative analysis showed that the proposed method provides more accurate and improved quality (e.g., high structural preservation) conductivity maps compared to conventional reconstruction methods. Representatively, in the healthy brain in-silico phantom experiment, the proposed method yielded mean conductivity values of 1.97 ± 0.20 S/m for CSF, 0.33 ± 0.04 S/m for WM, and 0.52 ± 0.08 S/m for GM, which were closer to the ground-truth conductivity (2.00, 0.30, 0.50 S/m) than the integral-based method (2.56 ± 2.31, 0.39 ± 0.12, 0.68 ± 0.33 S/m). In-vivo ANN-based conductivity reconstructions were also of improved quality compared to conventional reconstructions and demonstrated network generalizability and robustness to in-vivo data and pathologies. The reported in-vivo brain conductivity values were in agreement with literatures. In addition, the proposed method was observed for various SNR levels (SNR levels = 10, 20, 40, and 58) and repeatability conditions (the eight acquisitions with the number of signal averages = 1). The preliminary investigations on brain tumor patient datasets suggest that the network trained on simulated dataset can generalize to unforeseen in-vivo pathologies, thus demonstrating its potential for clinical applications.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Condutividade Elétrica , Imagens de Fantasmas , Neuroimagem , Algoritmos
5.
Opt Express ; 31(2): 2049-2060, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36785227

RESUMO

We proposed inverse-designed nanophotonic waveguide devices which have the desired optical responses in the wide band of 1450-1650 nm. The proposed devices have an ultra-compact size of just 1.5 µm × 3.0 µm and are designed on a silicon-on-insulator (SOI) waveguide platform. Individual nano-pixels with dimensions of 150 nm × 150 nm were made of either silicon or silicon dioxide, and the materials for the 200 total cells were determined using a trained deep neural network. While training the two networks, the hyperparameter optimization method was applied to make the training process efficient. We then fabricated the proposed devices using a CMOS-compatible fabrication process, and experimentally verified the fabricated device performance.

6.
Opt Express ; 31(6): 9935-9944, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-37157557

RESUMO

Precise imaging in three-dimension (3D) is an essential technique for solid-state light detection and ranging (LiDAR). Among various solid-state LiDAR technologies, silicon (Si) optical phased array (OPA)-based LiDAR has the significant advantage of robust 3D imaging due to its high scanning speed, low power consumption, and compactness. Numerous techniques employing a Si OPA have utilized two-dimensional arrays or wavelength tuning for longitudinal scanning but the operation of those systems is restricted by additional requirements. Here, we demonstrate high-accuracy 3D imaging using a Si OPA with a tunable radiator. As we adapted a time-of-flight approach for distance measurement, we have developed an optical pulse modulator that allows a ranging accuracy of less than 2 cm. The implemented Si OPA is composed of an input grating coupler, multimode interferometers, electro-optic p-i-n phase shifters, and thermo-optic n-i-n tunable radiators. With this system, it is possible to attain a wide beam steering range of 45° in a transversal angle with a 0.7° divergence angle, and 10° in a longitudinal angle with a 0.6° divergence angle can be achieved using Si OPA. The character toy model was successfully imaged in three dimensions with a range resolution of 2 cm using the Si OPA. The further improvement of each component of the Si OPA will allow even more accurate 3D imaging over a longer distance.

7.
Chemistry ; 29(14): e202203128, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36447369

RESUMO

The cationic complex [Ni(H)(OH)]+ was previously found to activate dioxygen and methane in gas phase under single collision conditions. These remarkable reactivities were thought to originate from a non-classical electronic structure, where the Ni-center adopts a Ni(II), instead of the classically expected Ni(III) oxidation state by formally accepting an electron from the hydroxo ligand, which formally becomes a hydroxyl radical in the process. Such radicaloid oxygen moieties are envisioned to easily react with otherwise inert substrates, mimicking familiar reactivities of free radicals. In this study, the reductive activation of dioxygen by [Ni(H)(OH)]+ to afford the hydroperoxo species was investigated using coupled cluster, multireference ab initio and density functional theory calculations. Orbital and wave function analyses indicate that O2 binding tranforms the aforementioned non-classical electronic structure to a classical Ni(III)-hydroxyl system, before O2 reduction takes place. Remarkably, we found no evidence for a direct involvement of the radicaloid hydroxyl in the reaction with O2 , as is often assumed. The function of the redox non-innocent character of the activator complex is to protect the reactive electronic structure until the complex engages O2 , upon which a dramatic electronic reorganization releases internal energy and drives the chemical reaction to completion.

8.
J Am Chem Soc ; 144(29): 13066-13070, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35833652

RESUMO

Highly modular and rational syntheses of titanium compounds containing ditelluride, terminal telluride, and bis(telluride) structural motifs are disclosed in this study. Titanate anions bearing two cis and terminal telluride functionalities bound to the same metal center represent a unique example of a group 4 transition metal bis(chalcogenide) ion and are accessed in a simple, single-step procedure from Ti(III) bis(alkyl) complexes in the presence of an outer-sphere reductant and at least 3 equiv of Te0 powder. These compounds have been characterized crystallographically and spectroscopically with some preliminary reactivity reported for the anionic Ti(═Te)2 motif. We also report solution 125Te NMR spectral data in addition to theoretical studies addressing the bonding and structure for these titanate bis(tellurido) systems.


Assuntos
Compostos Organometálicos , Titânio , Espectroscopia de Ressonância Magnética , Metais , Compostos Organometálicos/química , Titânio/química
9.
Opt Lett ; 47(19): 4857-4860, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36181135

RESUMO

We demonstrate beam steering using a passive silica optical phased array (OPA) with wavelength tuning. In this OPA, a constant path difference is built up to assign sequential phase delays with a wavelength variation in arrayed waveguide channels for the beam steering. From as-fabricated 1 × 101 passive silica OPA chips, we successfully achieved beam forming with a transversal divergence angle of 0.57° at a 1548.3-nm wavelength and also beam steering of 15.4° by wavelength tuning of 30.7 nm. Combining a cylindrical lens in front of the end-fire radiators, the longitudinal divergence angle could be reduced from 13.0° to 0.42°. The side-mode suppression ratio of the beam was 10.3 dB at the center position. Through simulation, we analyzed the effects of the phase errors on the beam quality, due to the effective index fluctuation of the waveguide channels, and provided an allowable error range to attain beam forming from the passive OPA.

10.
Inorg Chem ; 61(17): 6438-6450, 2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35438990

RESUMO

It was recently discovered that (Ph2PPrPDI)Mn (PDI = pyridine diimine) exists as a superposition of low-spin Mn(II) that is supported by a PDI dianion and intermediate-spin Mn(II) that is antiferromagnetically coupled to a triplet PDI dianion, a finding that encouraged the synthesis and electronic structure evaluation of late first row metal variants that feature the same chelate. The addition of Ph2PPrPDI to FeBr2 resulted in bromide dissociation and the formation of [(Ph2PPrPDI)FeBr][Br]. Reduction of this precursor using excess sodium amalgam afforded (Ph2PPrPDI)Fe, which possesses an Fe(II) center that is supported by a dianionic PDI ligand. Similarly, reduction of a premixed solution of Ph2PPrPDI and CoCl2 yielded the cobalt analog, (Ph2PPrPDI)Co. EPR spectroscopy and density functional theory calculations revealed that this compound features a high-spin Co(I) center that is antiferromagnetically coupled to a PDI radical anion. The addition of Ph2PPrPDI to Ni(COD)2 resulted in ligand displacement and the formation of (Ph2PPrPDI)Ni, which was found to possess a pendent phosphine group. Single-crystal X-ray diffraction, CASSCF calculations, and EPR spectroscopy indicate that (Ph2PPrPDI)Ni is best described as having a Ni(II)-PDI2- configuration. The electronic differences between these compounds are highlighted, and a computational analysis of Ph2PPrPDI denticity has revealed the thermodynamic penalties associated with phosphine dissociation from 5-coordinate (Ph2PPrPDI)Mn, (Ph2PPrPDI)Fe, and (Ph2PPrPDI)Co.


Assuntos
Cobalto , Ferro , Cobalto/química , Eletrônica , Ferro/química , Ligantes , Níquel , Oxirredução , Fosfinas , Piridinas/química
11.
Magn Reson Med ; 86(4): 2084-2094, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33949721

RESUMO

PURPOSE: To denoise B1+ phase using a deep learning method for phase-based in vivo electrical conductivity reconstruction in a 3T MR system. METHODS: For B1+ phase deep-learning denoising, a convolutional neural network (U-net) was chosen. Training was performed on data sets from 10 healthy volunteers. Input data were the real and imaginary components of single averaged spin-echo data (SNR = 45), which was used to approximate the B1+ phase. For label data, multiple signal-averaged spin-echo data (SNR = 128) were used. Testing was performed on in silico and in vivo data. Reconstructed conductivity maps were derived using phase-based conductivity reconstructions. Additionally, we investigated the usability of the network to various SNR levels, imaging contrasts, and anatomical sites (ie, T1 , T2 , and proton density-weighted brain images and proton density-weighted breast images. In addition, conductivity reconstructions from deep learning-based denoised data were compared with conventional image filters, which were used for data denoising in electrical properties tomography (ie, the Gaussian filtering and the Savitzky-Golay filtering). RESULTS: The proposed deep learning-based denoising approach showed improvement for B1+ phase for both in silico and in vivo experiments with reduced quantitative error measures compared with other methods. Subsequently, this resulted in an improvement of reconstructed conductivity maps from the denoised B1+ phase with deep learning. CONCLUSION: The results suggest that the proposed approach can be used as an alternative preprocessing method to denoise B1+ maps for phase-based conductivity reconstruction without relying on image filters or signal averaging.


Assuntos
Aprendizado Profundo , Encéfalo/diagnóstico por imagem , Condutividade Elétrica , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Razão Sinal-Ruído
12.
J Magn Reson Imaging ; 54(2): 631-645, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33894088

RESUMO

BACKGROUND: There is increasing interest in noncontrast-enhanced MRI due to safety concerns for gadolinium contrast agents. PURPOSE: To investigate the clinical feasibility of MR-based conductivity imaging for breast cancer detection and lesion differentiation. STUDY TYPE: Prospective. SUBJECTS: One hundred and ten women, with 112 known cancers and 17 benign lesions (biopsy-proven), scheduled for preoperative MRI. FIELD STRENGTH/SEQUENCE: Non-fat-suppressed T2-weighted turbo spin-echo sequence (T2WI), dynamic contrast-enhanced MRI and diffusion-weighted imaging (DWI) at 3T. ASSESSMENT: Cancer detectability on each imaging modality was qualitatively evaluated on a per-breast basis: the conductivity maps derived from T2WI were independently reviewed by three radiologists (R1-R3). T2WI, DWI, and pre-operative digital mammography were independently reviewed by three other radiologists (R4-R6). Conductivity and apparent diffusion coefficient (ADC) measurements (mean, minimum, and maximum) were performed for 112 cancers and 17 benign lesions independently by two radiologists (R1 and R2). Tumor size was measured from surgical specimens. STATISTICAL TESTS: Cancer detection rates were compared using generalized estimating equations. Multivariable logistic regression analysis was performed to identify factors associated with cancer detectability. Discriminating ability of conductivity and ADC was evaluated by using the areas under the receiver operating characteristic curve (AUC). RESULTS: Conductivity imaging showed lower cancer detection rates (20%-32%) compared to T2WI (62%-71%), DWI (85%-90%), and mammography (79%-88%) (all P < 0.05). Fatty breast on MRI (odds ratio = 11.8, P < 0.05) and invasive tumor size (odds ratio = 1.7, P < 0.05) were associated with cancer detectability of conductivity imaging. The maximum conductivity showed comparable ability to the mean ADC in discriminating between cancers and benign lesions (AUC = 0.67 [95% CI: 0.59, 0.75] vs. 0.84 [0.76, 0.90], P = 0.06 (R1); 0.65 [0.56, 0.73] vs. 0.82 [0.74, 0.88], P = 0.07 (R2)). DATA CONCLUSION: Although conductivity imaging showed suboptimal performance in breast cancer detection, the quantitative measurement of conductivity showed the potential for lesion differentiation. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 2.


Assuntos
Neoplasias da Mama , Mama/diagnóstico por imagem , Neoplasias da Mama/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Feminino , Humanos , Imageamento por Ressonância Magnética , Estudos Prospectivos , Estudos Retrospectivos
13.
Xenotransplantation ; 28(4): e12703, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34176167

RESUMO

BACKGROUND: Porcine islet xenotransplantation is a promising treatment for type 1 diabetes as an alternative to human pancreatic islet transplantation and long-term insulin therapy. Several research groups have explored porcine islets as an alternative to the inconsistent and chronic shortage of pancreases from human organ donors. Studies have confirmed successful transplant of porcine islets into non-human primate models of diabetes; however, in most cases, they require more than one adult porcine donor to achieve sufficient viable islet mass for sustained function. The importance of GMP-grade reagents includes the following: specific enzymes utilized in the pancreatic isolation process were identified as a key factor in successful human clinical islet transplantation trials using cadaveric islets. As xenotransplantation clinical research progresses, isolation reagents and digestion enzymes play a key role in the consistency of the product and ultimately the outcome of the islet xenotransplant. In this study, we evaluated several commercially available enzyme blends that have been used for islet isolation. We evaluated their impact on islet isolation yield and subsequent islet function as part of our plan to bring xenotransplantation into clinical xenotransplantation trials. METHODS: Adult porcine islets were isolated from 16 to 17-month-old Yucatan miniature pigs following standard rapid procurement. Pigs weighed on average 48.71 ± 2.85 kg, and the produced pancreases were 39.51 ± 1.80 grams (mean ± SEM). After ductal cannulation, we evaluated both GMP-grade enzymes (Collagenase AF-1 GMP grade and Liberase MTF C/T GMP grade) and compared with standard non-GMP enzyme blend (Collagenase P). Islet quality control assessments including islet yield, islet size (IEQ), membrane integrity (acridine orange/propidium iodide), and functional viability (GSIS) were evaluated in triplicate on day 1 post-islet isolation culture. RESULTS: Islet yield was highest in the group of adult pigs where Collagenase AF-1 GMP grade was utilized. The mean islet yield was 16 586 ± 1391 IEQ/g vs 8302 ± 986 IEQ/g from pancreases isolated using unpurified crude Collagenase P. The mean islet size was higher in Collagenase AF-1 GMP grade with neutral protease than in Collagenase P and Liberase MTF C/T GMP grade. We observed no significant difference between the experimental groups, but in vitro islet function after overnight tissue culture was significantly higher in Collagenase AF-1 GMP grade with neutral protease and Liberase MTF C/T GMP grade than the crude control enzyme group. As expected, the GMP-grade enzyme has significantly lower endotoxin levels than the crude control enzyme group when measured. CONCLUSIONS: This study validates the importance of using specifically blended GMP grade for adult pig islet isolation for xenotransplantation trials and the ability to isolate a sufficient number of viable islets from one adult pig to provide a sufficient number for islets for a clinical islet transplantation. GMP-grade enzymes are highly efficient in increasing islet yield, size, viability, and function at a lower and acceptable endotoxin level. Ongoing research transplants these islets into animal models of diabetes to validate in vivo function. Also, these defined and reproducible techniques using GMP-grade enzymes allow for continuance of our plan to advance to xenotransplantation of isolated pig islets for the treatment of type 1 diabetes.


Assuntos
Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Animais , Separação Celular , Colagenases , Pâncreas , Suínos , Transplante Heterólogo
14.
Biochem Biophys Res Commun ; 528(1): 146-153, 2020 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-32451084

RESUMO

The naked mole-rat (NMR, Heterocephalus glaber) is the longest-living known rodent species, with a maximum lifespan of over 30 years. NMRs exhibit negligible senescence, exceptional resistance to cancer, and high basal autophagy activity compared with mouse. The molecular mechanisms and physiological roles underlying the high basal autophagy activity in NMRs remain to be elucidated. We identified that the Atg12-Atg5 conjugate, a critical component of autophagosome formation, was highly expressed in NMR skin fibroblasts (NSFs) compared with that in mouse skin fibroblasts. Phenotypic analysis of Atg5 knockdown NSFs revealed that high basal autophagy activity in NSFs was associated with abundant expression of the Atg12-Atg5 conjugate. Atg5 knockdown in NSFs led to accumulation of dysfunctional mitochondria, and suppressed cell proliferation and cell adhesion ability, promoting apoptosis/anoikis accompanied by upregulation of the apoptosis-related genes, Bax and Noxa. Furthermore, inhibition of the p53/Rb pro-apoptotic pathway with SV40 large T antigen abolished Atg5 knockdown-induced increases in apoptosis/anoikis. Taken together, these findings suggest that high basal autophagy activity in NMR cells, mediated by Atg5, contributes to suppression of p53/Rb-induced apoptosis, which could benefit the longevity of NMR cells.


Assuntos
Anoikis , Apoptose , Proteína 5 Relacionada à Autofagia/metabolismo , Autofagia , Fibroblastos/metabolismo , Proteína do Retinoblastoma/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo , Animais , Proteína 12 Relacionada à Autofagia/metabolismo , Adesão Celular , Proliferação de Células , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Técnicas de Silenciamento de Genes , Masculino , Mitocôndrias/metabolismo , Ratos-Toupeira , Pele/citologia , Regulação para Cima
15.
Stem Cells ; 37(3): 368-381, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30444564

RESUMO

Mesenchymal stem cells (MSCs) are multipotent cells that can differentiate into mature cells of various cell types. Although the differentiation process of MSCs requires lineage-specific transcription factors, the exact molecular mechanism that determines MSCs differentiation is not clearly addressed. Here, we demonstrate a Smad4-Taz axis as a new intrinsic regulator for adipo-osteogenic differentiation of MSCs and show that this function of Smad4 is independent of the transforming growth factor-ß signal. Smad4 directly bound to the Taz protein and facilitated nuclear localization of Taz through its nuclear localization signal. Nuclear retention of Taz by direct binding to Smad4 increased expression of osteogenic genes through enhancing Taz-runt-related transcription factor 2 (Runx2) interactions in the C3H10T1/2 MSC cell line and preosteoblastic MC3T3-E1 cells, whereas it suppressed expression of adipogenic genes through promoting Taz-peroxisome proliferator-activated receptor-γ (PPARγ) interaction in C3H10T1/2 and preadipogenic 3T3-L1 cells. A reciprocal role of the Smad4 in osteogenic and adipogenic differentiation was also observed in human adipose tissue-derived stem cells (hASCs). Consequently, Smad4 depletion in C3H10T1/2 and hASCs reduced nuclear retention of Taz and thus caused the decreased interaction with Runx2 or PPARγ, resulting in delayed osteogenesis or enhanced adipogenesis of the MSC. Therefore, these findings provide insight into a novel function of Smad4 to regulate the balance of MSC lineage commitment through reciprocal targeting of the Taz protein in osteogenic and adipogenic differentiation pathways. Stem Cells 2019;37:368-381.


Assuntos
Adipogenia , Células-Tronco Mesenquimais/metabolismo , Osteogênese , Transdução de Sinais , Proteína Smad4/metabolismo , Transativadores/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Diferenciação Celular , Linhagem Celular , Humanos , Células-Tronco Mesenquimais/citologia , Camundongos , Proteína Smad4/genética , Transativadores/genética , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional
16.
J Am Chem Soc ; 141(38): 15327-15337, 2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31462037

RESUMO

N,N-Diborylamines have emerged as promising reagents in organic synthesis; however, their efficient preparation and full synthetic utility have yet to be realized. To address both shortcomings, an effective catalyst for nitrile dihydroboration was sought. Heating CoCl2 in the presence of PyEtPDI afforded the six-coordinate Co(II) salt, [(PyEtPDI)CoCl][Cl]. Upon adding 2 equiv of NaEt3BH, hydride transfer to one chelate imine functionality was observed, resulting in the formation of (κ4-N,N,N,N-PyEtIPCHMeNEtPy)Co. Single-crystal X-ray diffraction and density functional theory calculations revealed that this compound possesses a low-spin Co(II) ground state featuring antiferromagnetic coupling to a singly reduced imino(pyridine) moiety. Importantly, (κ4-N,N,N,N-PyEtIPCHMeNEtPy)Co was found to catalyze the dihydroboration of nitriles using HBPin with turnover frequencies of up to 380 h-1 at ambient temperature. Stoichiometric addition experiments revealed that HBPin adds across the Co-Namide bond to generate a hydride intermediate that can react with additional HBPin or nitriles. Computational evaluation of the reaction coordinate revealed that the B-H addition and nitrile insertion steps occur on the antiferromagnetically coupled triplet spin manifold. Interestingly, formation of the borylimine intermediate was found to occur following BPin transfer from the borylated chelate arm to regenerate (κ4-N,N,N,N-PyEtIPCHMeNEtPy)Co. Borylimine reduction is in turn facile and follows the same ligand-assisted borylation pathway. The independent hydroboration of alkyl and aryl imines was also demonstrated at 25 °C. With a series of N,N-diborylamines in hand, their addition to carboxylic acids allowed for the direct synthesis of amides at 120 °C, without the need for an exogenous coupling reagent.

17.
Magn Reson Med ; 81(1): 702-710, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30058173

RESUMO

PURPOSE: To obtain in vivo electrical conductivity images from multi-echo gradient-echo (mGRE) sequence using a zero-TE phase extrapolation algorithm based on the Kalman method. METHODS: For estimation of the zero-TE phase from the mGRE data, an iterative algorithm consisting of a combination of the Kalman filter, Kalman smoother, and expectation maximization was implemented and compared with linear extrapolation methods. Simulations were performed for verification, and phantom and in vivo studies were conducted for validation. RESULTS: Compared with the conventional method that linearly extrapolates the zero-TE phase from the mGRE data, the phase estimation of the proposed method was more stable in situations in which nonlinear phase evolution exists. Numerical simulation results showed that the stability is guaranteed under various nonlinearity levels. Phantom study results show that this method provides improved conductivity imaging compared with the conventional methods. In vivo results demonstrate conductivity images similar to spin echo-based conductivity images with the added benefit of the acquisition of susceptibility images when using mGRE. CONCLUSION: The proposed method improves zero-TE phase extrapolation, especially in regions of nonlinear phase evolution. Improved conductivity imaging using mGRE can be performed.


Assuntos
Condutividade Elétrica , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Algoritmos , Encéfalo/diagnóstico por imagem , Simulação por Computador , Campos Eletromagnéticos , Humanos , Modelos Lineares , Método de Monte Carlo , Dinâmica não Linear , Imagens de Fantasmas , Razão Sinal-Ruído
18.
Magn Reson Med ; 81(3): 2167-2175, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30298524

RESUMO

PURPOSE: To develop an electrical property tomography reconstruction method that achieves improvements over standard method by redesigning the Laplacian kernel. THEORY AND METHODS: A decomposition property of the governing PET equation shows the possibility of redesigning the Laplacian kernel for conductivity reconstruction. Hence, the discrete Laplacian operator used for electrical property tomography reconstruction is redesigned to have a Gaussian-like envelope, which enables manipulation of the spatial and spectral response. The characteristics of the proposed kernel are investigated through numerical simulations and in vivo brain experiments. RESULTS: The proposed method reduces textured noise, which hampers observing features of the conductivity image. Furthermore, the proposed scheme can mitigate the propagation of local phase error such as flow-induced phase. By doing so, the proposed method can recover feature information in conductivity (or resistivity) images. Lastly, the proposed kernel can be extended to other electrical property tomography reconstructions, improving the quality of images. CONCLUSION: An alternative design of the Laplacian kernel for conductivity imaging has been developed to mitigate the textured noise and the propagation of local phase artifact.


Assuntos
Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Tomografia/métodos , Algoritmos , Artefatos , Condutividade Elétrica , Humanos , Processamento de Imagem Assistida por Computador/métodos , Modelos Estatísticos , Modelos Teóricos , Distribuição Normal , Imagens de Fantasmas
19.
Sci Rep ; 14(1): 3773, 2024 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355610

RESUMO

Synthetic oligonucleotides have become a fundamental tool in a wide range of biological fields, including synthetic biology, biosensing, and DNA storage. Reliable access to equipment for synthesizing high-density oligonucleotides in the laboratory ensures research security and the freedom of research expansion. In this study, we introduced the Open-Source Inkjet DNA Synthesizer (OpenIDS), an open-source inkjet-based microarray synthesizer that offers ease of construction, rapid deployment, and flexible scalability. Utilizing 3D printing, Arduino, and Raspberry Pi, this newly designed synthesizer achieved robust stability with an industrial inkjet printhead. OpenIDS maintains low production costs and is therefore suitable for self-fabrication and optimization in academic laboratories. Moreover, even non-experts can create and control the synthesizer with a high degree of freedom for structural modifications. Users can easily add printheads or alter the design of the microarray substrate according to their research needs. To validate its performance, we synthesized oligonucleotides on 144 spots on a 15 × 25-mm silicon wafer filled with controlled pore glass. The synthesized oligonucleotides were analyzed using urea polyacrylamide gel electrophoresis.


Assuntos
DNA , Oligonucleotídeos , DNA/química , Análise em Microsséries
20.
Biosens Bioelectron ; 261: 116517, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38924814

RESUMO

Cell-free protein synthesis (CFPS) reactions can be used to detect nucleic acids. However, most CFPS systems rely on a toehold switch and exhibit the following critical limitations: (i) off-target signals due to leaky translation in the absence of target nucleic acids, (ii) a suboptimal detection limit of approximately 30 nM without pre-amplification, and (iii) labor-intensive screening processes due to sequence constraints for the target nucleic acids. To overcome these shortcomings, we developed a new split T7 switch-mediated CFPS system in which the split T7 promoter was applied to a three-way junction structure to selectively initiate transcription-translation only in the presence of target nucleic acids. Both fluorescence and colorimetric detection systems were constructed by employing different reporter proteins. Notably, we introduced the self-complementation of split fluorescent proteins to streamline preparation of the proposed system, enabling versatile applications. Operation of this one-pot approach under isothermal conditions enabled the detection of target nucleic acids at concentrations as low as 10 pM, representing more than a thousand times improvement over previous toehold switch-based approaches. Furthermore, the proposed system demonstrated high specificity in detecting target nucleic acids and compatibility with various reporter proteins encoded in the expression region. By eliminating issues associated with the previous toehold switch system, our split T7 switch-mediated CFPS system could become a core platform for detecting various target nucleic acids.


Assuntos
Técnicas Biossensoriais , Sistema Livre de Células , Ácidos Nucleicos , Biossíntese de Proteínas , Técnicas Biossensoriais/métodos , Ácidos Nucleicos/química , Bacteriófago T7/genética , Colorimetria/métodos , Regiões Promotoras Genéticas , Limite de Detecção , Proteínas Virais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA