Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 209
Filtrar
1.
Microb Cell Fact ; 23(1): 122, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678199

RESUMO

BACKGROUND: Industrial biomanufacturing of value-added products using CO2 as a carbon source is considered more sustainable, cost-effective and resource-efficient than using common carbohydrate feedstocks. Cupriavidus necator H16 is a representative H2-oxidizing lithoautotrophic bacterium that can be utilized to valorize CO2 into valuable chemicals and has recently gained much attention as a promising platform host for versatile C1-based biomanufacturing. Since this microbial platform is genetically tractable and has a high-flux carbon storage pathway, it has been engineered to produce a variety of valuable compounds from renewable carbon sources. In this study, the bacterium was engineered to produce resveratrol autotrophically using an artificial phenylpropanoid pathway. RESULTS: The heterologous genes involved in the resveratrol biosynthetic pathway-tyrosine ammonia lyase (TAL), 4-coumaroyl CoA ligase (4CL), and stilbene synthase (STS) -were implemented in C. necator H16. The overexpression of acetyl-CoA carboxylase (ACC), disruption of the PHB synthetic pathway, and an increase in the copy number of STS genes enhanced resveratrol production. In particular, the increased copies of VvSTS derived from Vitis vinifera resulted a 2-fold improvement in resveratrol synthesis from fructose. The final engineered CR-5 strain produced 1.9 mg/L of resveratrol from CO2 and tyrosine via lithoautotrophic fermentation. CONCLUSIONS: To the best of our knowledge, this study is the first to describe the valorization of CO2 into polyphenolic compounds by engineering a phenylpropanoid pathway using the lithoautotrophic bacterium C. necator H16, demonstrating the potential of this strain a platform for sustainable chemical production.


Assuntos
Dióxido de Carbono , Cupriavidus necator , Fermentação , Engenharia Metabólica , Resveratrol , Cupriavidus necator/metabolismo , Cupriavidus necator/genética , Resveratrol/metabolismo , Dióxido de Carbono/metabolismo , Engenharia Metabólica/métodos , Aciltransferases/genética , Aciltransferases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Amônia-Liases/metabolismo , Amônia-Liases/genética , Vias Biossintéticas
2.
Appl Microbiol Biotechnol ; 108(1): 403, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954014

RESUMO

2-Keto-3-deoxy-galactonate (KDGal) serves as a pivotal metabolic intermediate within both the fungal D-galacturonate pathway, which is integral to pectin catabolism, and the bacterial DeLey-Doudoroff pathway for D-galactose catabolism. The presence of KDGal enantiomers, L-KDGal and D-KDGal, varies across these pathways. Fungal pathways generate L-KDGal through the reduction and dehydration of D-galacturonate, whereas bacterial pathways produce D-KDGal through the oxidation and dehydration of D-galactose. Two distinct catabolic routes further metabolize KDGal: a nonphosphorolytic pathway that employs aldolase and a phosphorolytic pathway involving kinase and aldolase. Recent findings have revealed that L-KDGal, identified in the bacterial catabolism of 3,6-anhydro-L-galactose, a major component of red seaweeds, is also catabolized by Escherichia coli, which is traditionally known to be catabolized by specific fungal species, such as Trichoderma reesei. Furthermore, the potential industrial applications of KDGal and its derivatives, such as pyruvate and D- and L-glyceraldehyde, are underscored by their significant biological functions. This review comprehensively outlines the catabolism of L-KDGal and D-KDGal across different biological systems, highlights stereospecific methods for discriminating between enantiomers, and explores industrial application prospects for producing KDGal enantiomers. KEY POINTS: • KDGal is a metabolic intermediate in fungal and bacterial pathways • Stereospecific enzymes can be used to identify the enantiomeric nature of KDGal • KDGal can be used to induce pectin catabolism or produce functional materials.


Assuntos
Redes e Vias Metabólicas , Açúcares Ácidos , Açúcares Ácidos/metabolismo , Galactose/metabolismo , Galactose/análogos & derivados , Fungos/metabolismo , Fungos/enzimologia , Bactérias/metabolismo , Bactérias/enzimologia , Escherichia coli/metabolismo , Escherichia coli/genética , Estereoisomerismo
3.
Appl Microbiol Biotechnol ; 107(12): 3869-3875, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37148338

RESUMO

L-Fucose is one of the key metabolites in human-gut microbiome interactions. It is continuously synthesized by humans in the form of fucosylated glycans and fucosyl-oligosaccharides and delivered into the gut throughout their lifetime. Gut microorganisms metabolize L-fucose and produce short-chain fatty acids, which are absorbed by epithelial cells and used as energy sources or signaling molecules. Recent studies have revealed that the carbon flux in L-fucose metabolism by gut microorganisms is distinct from that in other sugar metabolisms because of cofactor imbalance and low efficiencies in energy synthesis of L-fucose metabolism. The large amounts of short-chain fatty acids produced during microbial L-fucose metabolism are used by epithelial cells to recover most of the energy used up during L-fucose synthesis. In this review, we present a detailed overview of microbial L-fucose metabolism and a potential solution for disease treatment and prevention using genetically engineered probiotics that modulate fucose metabolism. Our review contributes to the understanding of human-gut microbiome interactions through L-fucose metabolism. KEY POINTS: • Fucose-metabolizing microorganisms produce large amounts of short-chain fatty acids • Fucose metabolism differs from other sugar metabolisms by cofactor imbalance • Modulating fucose metabolism is the key to control host-gut microbiome interactions.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Fucose/metabolismo , Ácidos Graxos Voláteis/metabolismo , Açúcares
4.
Appl Microbiol Biotechnol ; 107(24): 7427-7438, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37812254

RESUMO

A novel metabolic pathway of 3,6-anhydro-L-galactose (L-AHG), the main sugar component in red macroalgae, was first discovered in the marine bacterium Vibrio sp. EJY3. L-AHG is converted to 2-keto-3-deoxy-galactonate (KDGal) in two metabolic steps. Here, we identified the enantiomeric nature of KDGal in the L-AHG catabolic pathway via stereospecific enzymatic reactions accompanying the biosynthesis of enantiopure L-KDGal and D-KDGal. Enantiopure L-KDGal and D-KDGal were synthesized by enzymatic reactions derived from the fungal galacturonate and bacterial oxidative galactose pathways, respectively. KDGal, which is involved in the L-AHG pathway, was also prepared. The results obtained from the reactions with an L-KDGal aldolase, specifically acting on L-KDGal, showed that KDGal in the L-AHG pathway exists in an L-enantiomeric form. Notably, we demonstrated the utilization of L-KDGal by Escherichia coli for the first time. E. coli cannot utilize L-KDGal as the sole carbon source. However, when a mixture of L-KDGal and D-galacturonate was used, E. coli utilized both. Our study suggests a stereoselective method to determine the absolute configuration of a compound. In addition, our results can be used to explore the novel L-KDGal catabolic pathway in E. coli and to construct an engineered microbial platform that assimilates L-AHG or L-KDGal as substrates. KEY POINTS: • Stereospecific enzyme reactions were used to identify enantiomeric nature of KDGal • KDGal in the L-AHG catabolic pathway exists in an L-enantiomeric form • E. coli can utilize L-KDGal as a carbon source when supplied with D-galacturonate.


Assuntos
Galactose , Alga Marinha , Galactose/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Redes e Vias Metabólicas , Alga Marinha/metabolismo , Carbono
5.
Mar Drugs ; 21(6)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37367665

RESUMO

Agarobiose (AB; d-galactose-ß-1,4-AHG), produced by one-step acid hydrolysis of agarose of red seaweed, is considered a promising cosmetic ingredient due to its skin-moisturizing activity. In this study, the use of AB as a cosmetic ingredient was found to be hampered due to its instability at high temperature and alkaline pH. Therefore, to increase the chemical stability of AB, we devised a novel process to synthesize ethyl-agarobioside (ethyl-AB) from the acid-catalyzed alcoholysis of agarose. This process mimics the generation of ethyl α-glucoside and glyceryl α-glucoside by alcoholysis in the presence of ethanol and glycerol during the traditional Japanese sake-brewing process. Ethyl-AB also showed in vitro skin-moisturizing activity similar to that of AB, but showed higher thermal and pH stability than AB. This is the first report of ethyl-AB, a novel compound produced from red seaweed, as a functional cosmetic ingredient with high chemical stability.


Assuntos
Bebidas Alcoólicas , Alga Marinha , Sefarose/química , Fermentação , Alga Marinha/química , Glucosídeos
6.
Metabolomics ; 18(7): 48, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35781849

RESUMO

INTRODUCTION: Rheumatoid arthritis (RA) and osteoarthritis (OA) are clinicopathologically different. OBJECTIVES: We aimed to assess the feasibility of metabolomics in differentiating the metabolite profiles of synovial fluid between RA and OA using gas chromatography/time-of-flight mass spectrometry. METHODS: We first compared the global metabolomic changes in the synovial fluid of 19 patients with RA and OA. Partial least squares-discriminant, hierarchical clustering, and univariate analyses were performed to distinguish metabolites of RA and OA. These findings were then validated using synovial fluid samples from another set of 15 patients with RA and OA. RESULTS: We identified 121 metabolites in the synovial fluid of the first 19 samples. The score plot of PLS-DA showed a clear separation between RA and OA. Twenty-eight crucial metabolites, including hypoxanthine, xanthine, adenosine, citrulline, histidine, and tryptophan, were identified to be capable of distinguishing RA metabolism from that of OA; these were found to be associated with purine and amino acid metabolism. CONCLUSION: Our results demonstrated that metabolite profiling of synovial fluid could clearly discriminate between RA and OA, suggesting that metabolomics may be a feasible tool to assist in the diagnosis and advance the comprehension of pathological processes for diseases.


Assuntos
Artrite Reumatoide , Osteoartrite , Artrite Reumatoide/diagnóstico , Artrite Reumatoide/metabolismo , Cromatografia Gasosa-Espectrometria de Massas/métodos , Humanos , Metabolômica/métodos , Osteoartrite/metabolismo , Líquido Sinovial/metabolismo
7.
Microb Cell Fact ; 21(1): 204, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36207743

RESUMO

BACKGROUND: Saccharomyces boulardii is a probiotic yeast that exhibits antimicrobial and anti-toxin activities. Although S. boulardii has been clinically used for decades to treat gastrointestinal disorders, several studies have reported weak or no beneficial effects of S. boulardii administration in some cases. These conflicting results of S. boulardii efficacity may be due to nutrient deficiencies in the intestine that make it difficult for S. boulardii to maintain its metabolic activity. RESULTS: To enable S. boulardii to overcome any nutritional deficiencies in the intestine, we constructed a S. boulardii strain that could metabolize L-fucose, a major component of mucin in the gut epithelium. The fucU, fucI, fucK, and fucA from Escherichia coli and HXT4 from S. cerevisiae were overexpressed in S. boulardii. The engineered S. boulardii metabolized L-fucose and produced 1,2-propanediol under aerobic and anaerobic conditions. It also produced large amounts of 1,2-propanediol under strict anaerobic conditions. An in silico genome-scale metabolic model analysis was performed to simulate the growth of S. boulardii on L-fucose, and elementary flux modes were calculated to identify critical metabolic reactions for assimilating L-fucose. As a result, we found that the engineered S. boulardii consumes L-fucose via (S)-lactaldehyde-(S)-lactate-pyruvate pathway, which is highly oxygen dependent. CONCLUSION: To the best of our knowledge, this is the first study in which S. cerevisiae and S. boulardii strains capable of metabolizing L-fucose have been constructed. This strategy could be used to enhance the metabolic activity of S. boulardii and other probiotic microorganisms in the gut.


Assuntos
Probióticos , Saccharomyces boulardii , Animais , Escherichia coli , Fucose/metabolismo , Lactatos/metabolismo , Mamíferos , Análise do Fluxo Metabólico , Mucinas/metabolismo , Oxigênio/metabolismo , Probióticos/metabolismo , Propilenoglicol/metabolismo , Piruvatos/metabolismo , Saccharomyces boulardii/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
8.
Microb Cell Fact ; 21(1): 231, 2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36335362

RESUMO

BACKGROUND: A representative hydrogen-oxidizing bacterium Cupriavidus necator H16 has attracted much attention as hosts to recycle carbon dioxide (CO2) into a biodegradable polymer, poly(R)-3-hydroxybutyrate (PHB). Although C. necator H16 has been used as a model PHB producer, the PHB production rate from CO2 is still too low for commercialization. RESULTS: Here, we engineer the carbon fixation metabolism to improve CO2 utilization and increase PHB production. We explore the possibilities to enhance the lithoautotrophic cell growth and PHB production by introducing additional copies of transcriptional regulators involved in Calvin Benson Bassham (CBB) cycle. Both cbbR and regA-overexpressing strains showed the positive phenotypes for 11% increased biomass accumulation and 28% increased PHB production. The transcriptional changes of key genes involved in CO2-fixing metabolism and PHB production were investigated. CONCLUSIONS: The global transcriptional regulator RegA plays an important role in the regulation of carbon fixation and shows the possibility to improve autotrophic cell growth and PHB accumulation by increasing its expression level. This work represents another step forward in better understanding and improving the lithoautotrophic PHB production by C. necator H16.


Assuntos
Cupriavidus necator , Cupriavidus necator/genética , Cupriavidus necator/metabolismo , Ácido 3-Hidroxibutírico , Dióxido de Carbono/metabolismo , Hidroxibutiratos/metabolismo
9.
Appl Microbiol Biotechnol ; 106(24): 8111-8120, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36399167

RESUMO

3,6-Anhydro-L-galactose (L-AHG) is a monomeric sugar in agarose derived from red macroalgae. Owing to its various physiological activities such as anti-inflammation, moisturizing, skin whitening, anti-colon cancer, and anti-cariogenicity, L-AHG is a potential functional ingredient. In our previous study, a simple and efficient two-step L-AHG production process was designed for high-titer L-AHG production, where a single enzyme was used after the liquefaction of agarose by acid prehydrolysis. However, the enzyme used did not completely hydrolyze agarobiose (AB). Therefore, in this study, for the efficient hydrolysis of AB and the high-titer production of L-AHG, various ß-galactosidases belonging to glycoside hydrolase families 1, 2, 35, and 42 were compared by testing their substrate specificities and kinetic parameters. Among the five ß-galactosidases, Bga42A, originating from Bifidobacterium longum ssp. infantis ATCC 15,697, showed the highest substrate specificity. Consequently, the two-step process utilizing Bga42A as a single enzyme resulted in a high-titer production of L-AHG at 85.9 g/L, demonstrating the feasibility of producing L-AHG from agarose. KEY POINTS: • L-AHG derived from red macroalgae has various physiological activities. • Various ß-galactosidases were evaluated to efficiently hydrolyze agarobiose. • Bga42A showed the highest substrate specificity against agarobiose. • The highest amount of L-AHG with 85.9 g/L was simply produced.


Assuntos
Proteínas de Bactérias , Bifidobacterium longum , Dissacarídeos , Galactose , Rodófitas , beta-Galactosidase , Humanos , beta-Galactosidase/química , Galactose/biossíntese , Dissacarídeos/química , Bifidobacterium longum/enzimologia , Proteínas de Bactérias/química , Rodófitas/química
10.
Mar Drugs ; 20(5)2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35621939

RESUMO

2-keto-3-deoxy sugar acids, which have potential as precursors in medicinal compound production, have gained attention in various fields. Among these acids, 2-keto-3-deoxy-l-galactonate (KDGal) has been biologically produced from D-galacturonate originating from plant-derived pectin. KDGal is also found in the catabolic pathway of 3,6-anhydro-l-galactose (AHG), the main component of red-algae-derived agarose. AHG is converted to 3,6-anhydrogalactonate by AHG dehydrogenase and subsequently isomerized to KDGal by 3,6-anhydrogalactonate cycloisomerase. Therefore, we used the above-described pathway to produce KDGal from agarose. Agarose was depolymerized to AHG and to agarotriose (AgaDP3) and agaropentaose (AgaDP5), both of which have significantly higher molecular weights than AHG. When only AHG was converted to KDGal, AgaDP3 and AgaDP5 remained unreacted. Finally, KDGal was effectively purified from the enzymatic products by size-exclusion chromatography based on the differences in molecular weights. These results show that KDGal can be enzymatically produced and purified from agarose for use as a precursor to high-value products.


Assuntos
Rodófitas , Alga Marinha , Galactose/química , Pectinas , Rodófitas/química , Alga Marinha/química , Sefarose/química
11.
Microb Cell Fact ; 20(1): 160, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34407819

RESUMO

BACKGROUND: Saccharomyces cerevisiae var. boulardii is a representative probiotic yeast that has been widely used in the food and pharmaceutical industries. However, S. boulardii has not been studied as a microbial cell factory for producing useful substances. Agarose, a major component of red macroalgae, can be depolymerized into neoagarooligosaccharides (NAOSs) by an endo-type ß-agarase. NAOSs, including neoagarotetraose (NeoDP4), are known to be health-benefiting substances owing to their prebiotic effect. Thus, NAOS production in the gut is required. In this study, the probiotic yeast S. boulardii was engineered to produce NAOSs by expressing an endo-type ß-agarase, BpGH16A, derived from a human gut bacterium Bacteroides plebeius. RESULTS: In total, four different signal peptides were compared in S. boulardii for protein (BpGH16A) secretion for the first time. The SED1 signal peptide derived from Saccharomyces cerevisiae was selected as optimal for extracellular production of NeoDP4 from agarose. Expression of BpGH16A was performed in two ways using the plasmid vector system and the clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 system. The production of NeoDP4 by engineered S. boulardii was verified and quantified. NeoDP4 was produced by S. boulardii engineered using the plasmid vector system and CRISPR-Cas9 at 1.86 and 0.80 g/L in a 72-h fermentation, respectively. CONCLUSIONS: This is the first report on NAOS production using the probiotic yeast S. boulardii. Our results suggest that S. boulardii can be considered a microbial cell factory to produce health-beneficial substances in the human gut.


Assuntos
Engenharia Metabólica/métodos , Oligossacarídeos/biossíntese , Probióticos/metabolismo , Saccharomyces boulardii/metabolismo , Bacteroides/genética , Fermentação , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/genética , Humanos , Oligossacarídeos/química , Oligossacarídeos/genética , Saccharomyces boulardii/genética , Saccharomyces cerevisiae/classificação , Sefarose/metabolismo
12.
Appl Microbiol Biotechnol ; 105(2): 617-625, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33404831

RESUMO

Seaweeds have received considerable attention as sources of dietary fiber and biomass for manufacturing valuable products. The major polysaccharides of red seaweeds include agar and porphyran. In a marine environment, marine bacteria utilize agar and porphyran through the agarase and porphyranase genes encoded in their genomes. Most of these enzymes identified and characterized so far originate from marine bacteria. Recently, Bacteroides plebeius, a human gut bacterium isolated from seaweed-eating Japanese individuals, was revealed to contain a polysaccharide utilization locus (PUL) targeting the porphyran and agarose of red seaweeds. For example, B. plebeius contains an endo-type ß-agarase, BpGH16A, belonging to glycoside hydrolase family 16. BpGH16A cleaves the ß-1,4-glycosidic linkages of agarose and produces neoagarooligosccharides from agarose. Since it is crucial to study the characteristics of BpGH16A to understand the depolymerization pathway of red seaweed polysaccharides by B. plebeius in the human gut and to industrially apply the enzyme for the depolymerization of agar, we characterized BpGH16A for the first time. According to our results, BpGH16A is an extracellular endo-type ß-agarase with an optimal temperature of 40 °C and an optimal pH of 7.0, which correspond to the temperature and pH of the human colon. BpGH16A depolymerizes agarose into neoagarotetraose (as the main product) and neoagarobiose (as the minor product). Thus, BpGH16A is suggested to be an important enzyme that initiates the depolymerization of red seaweed agarose or agar in the human gut by B. plebeius. KEY POINTS: • Bacteroides plebeius is a human gut bacterium isolated from seaweed-eating humans. • BpGH16A is an extracellular endo-type ß-agarase with optimal conditions of 40 °C and pH 7.0. • BpGH16A depolymerizes agarose into neoagarotetraose and neoagarobiose.


Assuntos
Microbioma Gastrointestinal , Ágar , Bacteroides , Glicosídeo Hidrolases/genética , Humanos , Sefarose
13.
Mar Drugs ; 19(5)2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34068166

RESUMO

α-Neoagarobiose (NAB)/neoagarooligosaccharide (NAO) hydrolase plays an important role as an exo-acting 3,6-anhydro-α-(1,3)-L-galactosidase in agarose utilization. Agarose is an abundant polysaccharide found in red seaweeds, comprising 3,6-anhydro-L-galactose (AHG) and D-galactose residues. Unlike agarose degradation, which has been reported in marine microbes, recent metagenomic analysis of Bacteroides plebeius, a human gut bacterium, revealed the presence of genes encoding enzymes involved in agarose degradation, including α-NAB/NAO hydrolase. Among the agarolytic enzymes, BpGH117 has been partially characterized. Here, we characterized the exo-acting α-NAB/NAO hydrolase BpGH117, originating from B. plebeius. The optimal temperature and pH for His-tagged BpGH117 activity were 35 °C and 9.0, respectively, indicative of its unique origin. His-tagged BpGH117 was thermostable up to 35 °C, and the enzyme activity was maintained at 80% of the initial activity at a pre-incubation temperature of 40 °C for 120 min. Km and Vmax values for NAB were 30.22 mM and 54.84 U/mg, respectively, and kcat/Km was 2.65 s-1 mM-1. These results suggest that His-tagged BpGH117 can be used for producing bioactive products such as AHG and agarotriose from agarose efficiently.


Assuntos
Bacteroides/enzimologia , Dissacaridases/biossíntese , Dissacaridases/química , Dissacarídeos/metabolismo , Ácido Edético/farmacologia , Ensaios Enzimáticos , Escherichia coli/genética , Galactosídeos/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Íons/farmacologia , Cinética , Oligossacarídeos/metabolismo , Estabilidade Proteica , Análise de Sequência de Proteína , Temperatura
14.
Mar Drugs ; 19(4)2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33921308

RESUMO

Numerous health benefits of diets containing red seaweeds or agar-derived sugar mixtures produced by enzymatic or acid hydrolysis of agar have been reported. However, among various agar-derived sugars, the key components that confer health-beneficial effects, such as prebiotic and anti-colon cancer activities, remain unclear. Here, we prepared various agar-derived sugars by multiple enzymatic reactions using an endo-type and an exo-type of ß-agarase and a neoagarobiose hydrolase and tested their in vitro prebiotic and anti-colon cancer activities. Among various agar-derived sugars, agarotriose exhibited prebiotic activity that was verified based on the fermentability of agarotriose by probiotic bifidobacteria. Furthermore, we demonstrated the anti-colon cancer activity of 3,6-anhydro-l-galactose, which significantly inhibited the proliferation of human colon cancer cells and induced their apoptosis. Our results provide crucial information regarding the key compounds derived from red seaweeds that confer beneficial health effects, including prebiotic and anti-colon cancer activities, to the host.


Assuntos
Ágar/metabolismo , Antineoplásicos/farmacologia , Bifidobacterium/metabolismo , Neoplasias do Colo/tratamento farmacológico , Galactose/análogos & derivados , Prebióticos , Rodófitas/metabolismo , Alga Marinha/metabolismo , Antineoplásicos/isolamento & purificação , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/patologia , Fermentação , Galactose/isolamento & purificação , Galactose/farmacologia , Células HCT116 , Humanos , Hidrólise
15.
Metab Eng ; 62: 322-329, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33098975

RESUMO

2'-Fucosyllactose (2'-FL), a human milk oligosaccharide with confirmed benefits for infant health, is a promising infant formula ingredient. Although Escherichia coli, Saccharomyces cerevisiae, Corynebacterium glutamicum, and Bacillus subtilis have been engineered to produce 2'-FL, their titers and productivities need be improved for economic production. Glucose along with lactose have been used as substrates for producing 2'-FL, but accumulation of by-products due to overflow metabolism of glucose hampered efficient production of 2'-FL regardless of a host strain. To circumvent this problem, we used xylose, which is the second most abundant sugar in plant cell wall hydrolysates and is metabolized through oxidative metabolism, for the production of 2'-FL by engineered yeast. Specifically, we modified an engineered S. cerevisiae strain capable of assimilating xylose to produce 2'-FL from a mixture of xylose and lactose. First, a lactose transporter (Lac12) from Kluyveromyces lactis was introduced. Second, a heterologous 2'-FL biosynthetic pathway consisting of enzymes Gmd, WcaG, and WbgL from Escherichia coli was introduced. Third, we adjusted expression levels of the heterologous genes to maximize 2'-FL production. The resulting engineered yeast produced 25.5 g/L of 2'-FL with a volumetric productivity of 0.35 g/L∙h in a fed-batch fermentation with lactose and xylose feeding to mitigate the glucose repression. Interestingly, the major location of produced 2'-FL by the engineered yeast can be changed using different culture media. While 72% of the produced 2'-FL was secreted when a complex medium was used, 82% of the produced 2'-FL remained inside the cells when a minimal medium was used. As yeast extract is already used as food and animal feed ingredients, 2'-FL enriched yeast extract can be produced cost-effectively using the 2'-FL-accumulating yeast cells.


Assuntos
Saccharomyces cerevisiae , Xilose , Fermentação , Humanos , Kluyveromyces , Saccharomyces cerevisiae/genética , Trissacarídeos
16.
Appl Environ Microbiol ; 86(6)2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31924614

RESUMO

Vibrio sp. strain EJY3 is an agarolytic marine bacterium that catabolizes 3,6-anhydro-l-galactose (AHG), a monomeric sugar unit of agarose. While the AHG catabolic pathway in EJY3 has been discovered recently, the complete agarolytic system of EJY3 remains unclear. We have identified five enzymes, namely, the ß-agarases VejGH50A, VejGH50B, VejGH50C, and VejGH50D and the α-neoagarooligosaccharide (NAOS) hydrolase VejGH117, involved in the agarolytic system of EJY3. Based on the characterization of recombinant enzymes and intracellular metabolite analysis, we found that EJY3 catabolizes agarose via two different agarolytic pathways. Among the four ß-agarases of EJY3, VejGH50A, VejGH50B, and VejGH50C were found to be extracellular agarases, producing mainly neoagarotetraose (NeoDP4) and neoagarobiose. By detecting intracellular NeoDP4 in EJY3 grown on agarose, NeoDP4 was observed being taken up by cells. Intriguingly, intracellular NeoDP4 acted as a branching point for the two different downstream agarolytic pathways. First, via the well-known agarolytic pathway, NeoDP4 was depolymerized into monomeric sugars by the exo-type ß-agarase VejGH50D and the α-NAOS hydrolase VejGH117. Second, via the newly found alternative agarolytic pathway, NeoDP4 was depolymerized into AHG and agarotriose (AgaDP3) by VejGH117, and AgaDP3 then was completely depolymerized into monomeric sugars by sequential reactions of the agarolytic ß-galactosidases (ABG) VejABG and VejGH117. Therefore, by experimentally verifying agarolytic enzymatic activity and transport of NeoDP4 into EJY3 cells, we revealed that EJY3 possesses both the known pathway and the newly discovered alternative pathway that involves α-NAOS hydrolase and ABG.IMPORTANCE Agarose is the main polysaccharide of red macroalgae and is composed of galactose and 3,6-anhydro-l-galactose. Many marine bacteria possess enzymes capable of depolymerizing agarose into oligomers and then depolymerizing the oligomers into monomers. Here, we experimentally verified that both a well-known agarolytic pathway and a novel agarolytic pathway exist in a marine bacterium, Vibrio sp. strain EJY3. In agarolytic pathways, agarose is depolymerized mainly into 4-sugar-unit oligomers by extracellular enzymes, which are then transported into cells. The imported oligomers are intracellularly depolymerized into galactose and 3,6-anhydro-l-galactose by two different agarolytic pathways, using different combinations of intracellular enzymes. These results elucidate the depolymerization routes of red macroalgal biomass in the ocean by marine bacteria and provide clues for developing industrial processes for efficiently producing sugars from red macroalgae.


Assuntos
Proteínas de Bactérias/metabolismo , Glicosídeo Hidrolases/metabolismo , Sefarose/metabolismo , Vibrio/metabolismo
17.
Arch Biochem Biophys ; 685: 108350, 2020 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-32220566

RESUMO

Iron is an essential requirement for the survival and virulence of most bacteria. The bacterial ferrous iron transporter protein FeoB functions as a major reduced iron transporter in prokaryotes, but its biochemical mechanism has not been fully elucidated. In the present study, we compared enzymatic properties of the cytosolic portions of pathogenic bacterial FeoBs to elucidate each bacterial strain-specific characteristic of the Feo system. We show that bacterial FeoBs are classified into two distinct groups that possess either a sole GTPase or an NTPase with a substrate promiscuity. This difference in nucleotide preference alters cellular requirements for monovalent and divalent cations. While the hydrolytic activity of the GTP-dependent FeoBs was stimulated by potassium, the action of the NTP-dependent FeoBs was not significantly affected by the presence of monovalent cations. Mutation of Asn11, having a role in potassium-dependent GTP hydrolysis, changed nucleotide specificity of the NTP-dependent FeoB, resulting in loss of ATPase activity. Sequence analysis suggested a possible association of alanine in the G5 motif for the NTP-dependent activity in FeoBs. This demonstration of the distinct enzymatic properties of bacterial FeoBs provides important insights into mechanistic details of Feo iron transport processes, as well as offers a promising species-specific anti-virulence target.


Assuntos
Proteínas de Bactérias/química , Proteínas de Transporte de Cátions/química , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/química , Sequência de Aminoácidos , Bactérias/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/metabolismo , Guanosina Trifosfato/química , Hidrólise , Mutagênese Sítio-Dirigida , Mutação , Nucleosídeo-Trifosfatase/química , Nucleosídeo-Trifosfatase/metabolismo , Potássio/metabolismo , Ligação Proteica , Alinhamento de Sequência , Especificidade por Substrato
18.
Clin Exp Rheumatol ; 38(3): 500-507, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31498072

RESUMO

OBJECTIVES: Because genetic and environmental factors both contribute to rheumatoid arthritis (RA), metabolomics could be a very useful tool to elucidate the pathophysiology of RA, and to predict response to treatment. This study was carried out to investigate synovial fluid (SF) metabolic perturbation in RA patients according to the degree of disease activity using gas chromatography/time-of-flight mass spectrometry (GC/TOF MS). METHODS: SF samples were obtained from 48 RA patients. Disease activity was assessed using DAS28-ESR(3). SF metabolomics profiling was performed using GC/TOF-MS, in conjunction with multivariate statistical analyses and pathway analyses. RESULTS: Significant discrimination of metabolite profiles between moderate and high disease activity groups was shown by PLS-DA, which provided evidence that SF metabolic profiles predicted disease activity. We found the significant correlation between DAS28-ESR(3) value and the intensities of 12 metabolites. The intensities of glycocyamine and indol-3-lactate positively correlated with DAS28-ESR(3) value. On the other hand, ß-alanine, asparagine, citrate, cyano-L-alanine, leucine, nicotinamide, citrulline, methionine, oxoproline, and salicylaldehyde negatively correlated with DAS28-ESR(3) value. We found fifteen pathways that were significantly associated with disease activity in RA and that the higher the disease activity, the more amino acid metabolic processes were affected. CONCLUSIONS: We found the SF metabolic alterations in RA patients according to disease activity by using GC/TOF MS and identified 12 candidate metabolic biomarkers that may well reflect the disease activity of RA. SF metabolomic approaches based on GC/TOF MS might provide additional information relating to monitoring disease activity in RA.


Assuntos
Artrite Reumatoide/diagnóstico , Metaboloma , Líquido Sinovial/metabolismo , Biomarcadores , Humanos , Metabolômica
19.
Appl Microbiol Biotechnol ; 103(13): 5435-5446, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31001747

RESUMO

Bioconversion of lignocellulosic biomass into ethanol requires efficient xylose fermentation. Previously, we developed an engineered Saccharomyces cerevisiae strain, named SR8, through rational and inverse metabolic engineering strategies, thereby improving its xylose fermentation and ethanol production. However, its fermentation characteristics have not yet been fully evaluated. In this study, we investigated the xylose fermentation and metabolic profiles for ethanol production in the SR8 strain compared with native Scheffersomyces stipitis. The SR8 strain showed a higher maximum ethanol titer and xylose consumption rate when cultured with a high concentration of xylose, mixed sugars, and under anaerobic conditions than Sch. stipitis. However, its ethanol productivity was less on 40 g/L xylose as the sole carbon source, mainly due to the formation of xylitol and glycerol. Global metabolite profiling indicated different intracellular production rates of xylulose and glycerol-3-phosphate in the two strains. In addition, compared with Sch. stipitis, SR8 had increased abundances of metabolites from sugar metabolism and decreased abundances of metabolites from energy metabolism and free fatty acids. These results provide insights into how to control and balance redox cofactors for the production of fuels and chemicals from xylose by the engineered S. cerevisiae.


Assuntos
Fermentação , Lignina/metabolismo , Metaboloma , Saccharomyces cerevisiae/metabolismo , Saccharomycetales/metabolismo , Xilose/metabolismo , Biomassa , Reatores Biológicos , Cromatografia Gasosa , Etanol/metabolismo , Glicerofosfatos/metabolismo , Espectrometria de Massas , Saccharomyces cerevisiae/genética , Saccharomycetales/genética , Xilulose/metabolismo
20.
Appl Microbiol Biotechnol ; 103(19): 8145-8155, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31482283

RESUMO

The environmental accumulation of polycyclic aromatic hydrocarbons (PAHs) is of great concern due to potential carcinogenic and mutagenic risks, as well as their resistance to remediation. While many fungi have been reported to break down PAHs in environments, the details of gene-based metabolic pathways are not yet comprehensively understood. Specifically, the genome-scale transcriptional responses of fungal PAH degradation have rarely been reported. In this study, we report the genomic and transcriptomic basis of PAH bioremediation by a potent fungal degrader, Dentipellis sp. KUC8613. The genome size of this fungus was 36.71 Mbp long encoding 14,320 putative protein-coding genes. The strain efficiently removed more than 90% of 100 mg/l concentration of PAHs within 10 days. The genomic and transcriptomic analysis of this white rot fungus highlights that the strain primarily utilized non-ligninolytic enzymes to remove various PAHs, rather than typical ligninolytic enzymes known for playing important roles in PAH degradation. PAH removal by non-ligninolytic enzymes was initiated by both different PAH-specific and common upregulation of P450s, followed by downstream PAH-transforming enzymes such as epoxide hydrolases, dehydrogenases, FAD-dependent monooxygenases, dioxygenases, and glycosyl- or glutathione transferases. Among the various PAHs, phenanthrene induced a more dynamic transcriptomic response possibly due to its greater cytotoxicity, leading to highly upregulated genes involved in the translocation of PAHs, a defense system against reactive oxygen species, and ATP synthesis. Our genomic and transcriptomic data provide a foundation of understanding regarding the mycoremediation of PAHs and the application of this strain for polluted environments.


Assuntos
Basidiomycota/genética , Basidiomycota/metabolismo , Perfilação da Expressão Gênica , Genômica , Redes e Vias Metabólicas/genética , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Biotransformação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA