Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 153(1): 193-205, 2013 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-23540698

RESUMO

Nucleosome remodelers of the DDM1/Lsh family are required for DNA methylation of transposable elements, but the reason for this is unknown. How DDM1 interacts with other methylation pathways, such as small-RNA-directed DNA methylation (RdDM), which is thought to mediate plant asymmetric methylation through DRM enzymes, is also unclear. Here, we show that most asymmetric methylation is facilitated by DDM1 and mediated by the methyltransferase CMT2 separately from RdDM. We find that heterochromatic sequences preferentially require DDM1 for DNA methylation and that this preference depends on linker histone H1. RdDM is instead inhibited by heterochromatin and absolutely requires the nucleosome remodeler DRD1. Together, DDM1 and RdDM mediate nearly all transposon methylation and collaborate to repress transposition and regulate the methylation and expression of genes. Our results indicate that DDM1 provides DNA methyltransferases access to H1-containing heterochromatin to allow stable silencing of transposable elements in cooperation with the RdDM pathway.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Elementos de DNA Transponíveis , Proteínas de Ligação a DNA/metabolismo , Heterocromatina , Histonas/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , Regulação da Expressão Gênica de Plantas , Nucleossomos/metabolismo
2.
Mol Cell ; 77(2): 310-323.e7, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31732458

RESUMO

DNA methylation and histone H1 mediate transcriptional silencing of genes and transposable elements, but how they interact is unclear. In plants and animals with mosaic genomic methylation, functionally mysterious methylation is also common within constitutively active housekeeping genes. Here, we show that H1 is enriched in methylated sequences, including genes, of Arabidopsis thaliana, yet this enrichment is independent of DNA methylation. Loss of H1 disperses heterochromatin, globally alters nucleosome organization, and activates H1-bound genes, but only weakly de-represses transposable elements. However, H1 loss strongly activates transposable elements hypomethylated through mutation of DNA methyltransferase MET1. Hypomethylation of genes also activates antisense transcription, which is modestly enhanced by H1 loss. Our results demonstrate that H1 and DNA methylation jointly maintain transcriptional homeostasis by silencing transposable elements and aberrant intragenic transcripts. Such functionality plausibly explains why DNA methylation, a well-known mutagen, has been maintained within coding sequences of crucial plant and animal genes.


Assuntos
Proteínas de Arabidopsis/genética , Metilação de DNA/genética , Elementos de DNA Transponíveis/genética , Histonas/genética , Arabidopsis/genética , DNA (Citosina-5-)-Metiltransferases/genética , Epigênese Genética/genética , Regulação da Expressão Gênica de Plantas/genética , Inativação Gênica/fisiologia , Heterocromatina/genética , Mutação/genética , Transcrição Gênica/genética
3.
Proc Natl Acad Sci U S A ; 117(27): 15852-15861, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32576693

RESUMO

In humans, a subset of placental cytotrophoblasts (CTBs) invades the uterus and its vasculature, anchoring the pregnancy and ensuring adequate blood flow to the fetus. Appropriate depth is critical. Shallow invasion increases the risk of pregnancy complications, e.g., severe preeclampsia. Overly deep invasion, the hallmark of placenta accreta spectrum (PAS), increases the risk of preterm delivery, hemorrhage, and death. Previously a rare condition, the incidence of PAS has increased to 1:731 pregnancies, likely due to the rise in uterine surgeries (e.g., Cesarean sections). CTBs track along scars deep into the myometrium and beyond. Here we compared the global gene expression patterns of CTBs from PAS cases to gestational age-matched control cells that invaded to the normal depth from preterm birth (PTB) deliveries. The messenger RNA (mRNA) encoding the guanine nucleotide exchange factor, DOCK4, mutations of which promote cancer cell invasion and angiogenesis, was the most highly up-regulated molecule in PAS samples. Overexpression of DOCK4 increased CTB invasiveness, consistent with the PAS phenotype. Also, this analysis identified other genes with significantly altered expression in this disorder, potential biomarkers. These data suggest that CTBs from PAS cases up-regulate a cancer-like proinvasion mechanism, suggesting molecular as well as phenotypic similarities in the two pathologies.


Assuntos
Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Regulação da Expressão Gênica , Placenta Acreta/metabolismo , Trofoblastos/metabolismo , Regulação para Cima , Feminino , Humanos , Miométrio , Placenta/patologia , Placenta Acreta/genética , Placenta Acreta/patologia , Pré-Eclâmpsia , Gravidez , Transcriptoma , Útero/patologia
4.
Proc Natl Acad Sci U S A ; 116(19): 9652-9657, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31000601

RESUMO

Epigenetic reprogramming is required for proper regulation of gene expression in eukaryotic organisms. In Arabidopsis, active DNA demethylation is crucial for seed viability, pollen function, and successful reproduction. The DEMETER (DME) DNA glycosylase initiates localized DNA demethylation in vegetative and central cells, so-called companion cells that are adjacent to sperm and egg gametes, respectively. In rice, the central cell genome displays local DNA hypomethylation, suggesting that active DNA demethylation also occurs in rice; however, the enzyme responsible for this process is unknown. One candidate is the rice REPRESSOR OF SILENCING1a (ROS1a) gene, which is related to DME and is essential for rice seed viability and pollen function. Here, we report genome-wide analyses of DNA methylation in wild-type and ros1a mutant sperm and vegetative cells. We find that the rice vegetative cell genome is locally hypomethylated compared with sperm by a process that requires ROS1a activity. We show that many ROS1a target sequences in the vegetative cell are hypomethylated in the rice central cell, suggesting that ROS1a also demethylates the central cell genome. Similar to Arabidopsis, we show that sperm non-CG methylation is indirectly promoted by DNA demethylation in the vegetative cell. These results reveal that DNA glycosylase-mediated DNA demethylation processes are conserved in Arabidopsis and rice, plant species that diverged 150 million years ago. Finally, although global non-CG methylation levels of sperm and egg differ, the maternal and paternal embryo genomes show similar non-CG methylation levels, suggesting that rice gamete genomes undergo dynamic DNA methylation reprogramming after cell fusion.


Assuntos
DNA Glicosilases , Metilação de DNA/fisiologia , DNA de Plantas , Oryza , Proteínas de Plantas , Pólen , Arabidopsis/enzimologia , Arabidopsis/genética , DNA Glicosilases/genética , DNA Glicosilases/metabolismo , DNA de Plantas/genética , DNA de Plantas/metabolismo , Oryza/enzimologia , Oryza/genética , Óvulo Vegetal/enzimologia , Óvulo Vegetal/genética , Desenvolvimento Vegetal/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pólen/enzimologia , Pólen/genética
5.
Proc Natl Acad Sci U S A ; 115(20): E4720-E4729, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29712855

RESUMO

The DEMETER (DME) DNA glycosylase catalyzes genome-wide DNA demethylation and is required for endosperm genomic imprinting and embryo viability. Targets of DME-mediated DNA demethylation reside in small, euchromatic, AT-rich transposons and at the boundaries of large transposons, but how DME interacts with these diverse chromatin states is unknown. The STRUCTURE SPECIFIC RECOGNITION PROTEIN 1 (SSRP1) subunit of the chromatin remodeler FACT (facilitates chromatin transactions), was previously shown to be involved in the DME-dependent regulation of genomic imprinting in Arabidopsis endosperm. Therefore, to investigate the interaction between DME and chromatin, we focused on the activity of the two FACT subunits, SSRP1 and SUPPRESSOR of TY16 (SPT16), during reproduction in Arabidopsis We found that FACT colocalizes with nuclear DME in vivo, and that DME has two classes of target sites, the first being euchromatic and accessible to DME, but the second, representing over half of DME targets, requiring the action of FACT for DME-mediated DNA demethylation genome-wide. Our results show that the FACT-dependent DME targets are GC-rich heterochromatin domains with high nucleosome occupancy enriched with H3K9me2 and H3K27me1. Further, we demonstrate that heterochromatin-associated linker histone H1 specifically mediates the requirement for FACT at a subset of DME-target loci. Overall, our results demonstrate that FACT is required for DME targeting by facilitating its access to heterochromatin.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Desmetilação do DNA , Regulação da Expressão Gênica de Plantas , Impressão Genômica , Heterocromatina , Plantas Geneticamente Modificadas/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Núcleo Celular , DNA de Plantas , Endosperma/metabolismo , Óvulo Vegetal/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Pólen/genética , Transcrição Gênica
6.
Proc Natl Acad Sci U S A ; 113(52): 15138-15143, 2016 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-27956642

RESUMO

Cytosine methylation is a DNA modification with important regulatory functions in eukaryotes. In flowering plants, sexual reproduction is accompanied by extensive DNA demethylation, which is required for proper gene expression in the endosperm, a nutritive extraembryonic seed tissue. Endosperm arises from a fusion of a sperm cell carried in the pollen and a female central cell. Endosperm DNA demethylation is observed specifically on the chromosomes inherited from the central cell in Arabidopsis thaliana, rice, and maize, and requires the DEMETER DNA demethylase in Arabidopsis DEMETER is expressed in the central cell before fertilization, suggesting that endosperm demethylation patterns are inherited from the central cell. Down-regulation of the MET1 DNA methyltransferase has also been proposed to contribute to central cell demethylation. However, with the exception of three maize genes, central cell DNA methylation has not been directly measured, leaving the origin and mechanism of endosperm demethylation uncertain. Here, we report genome-wide analysis of DNA methylation in the central cells of Arabidopsis and rice-species that diverged 150 million years ago-as well as in rice egg cells. We find that DNA demethylation in both species is initiated in central cells, which requires DEMETER in Arabidopsis However, we do not observe a global reduction of CG methylation that would be indicative of lowered MET1 activity; on the contrary, CG methylation efficiency is elevated in female gametes compared with nonsexual tissues. Our results demonstrate that locus-specific, active DNA demethylation in the central cell is the origin of maternal chromosome hypomethylation in the endosperm.


Assuntos
Arabidopsis/genética , Metilação de DNA , Desmetilação , Oryza/genética , Proteínas de Arabidopsis/metabolismo , DNA de Plantas/genética , Endosperma/metabolismo , Epigênese Genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genoma de Planta , Impressão Genômica , Homozigoto , RNA de Plantas/metabolismo , Sementes/genética
7.
Proc Natl Acad Sci U S A ; 107(43): 18729-34, 2010 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-20937895

RESUMO

Cytosine methylation silences transposable elements in plants, vertebrates, and fungi but also regulates gene expression. Plant methylation is catalyzed by three families of enzymes, each with a preferred sequence context: CG, CHG (H = A, C, or T), and CHH, with CHH methylation targeted by the RNAi pathway. Arabidopsis thaliana endosperm, a placenta-like tissue that nourishes the embryo, is globally hypomethylated in the CG context while retaining high non-CG methylation. Global methylation dynamics in seeds of cereal crops that provide the bulk of human nutrition remain unknown. Here, we show that rice endosperm DNA is hypomethylated in all sequence contexts. Non-CG methylation is reduced evenly across the genome, whereas CG hypomethylation is localized. CHH methylation of small transposable elements is increased in embryos, suggesting that endosperm demethylation enhances transposon silencing. Genes preferentially expressed in endosperm, including those coding for major storage proteins and starch synthesizing enzymes, are frequently hypomethylated in endosperm, indicating that DNA methylation is a crucial regulator of rice endosperm biogenesis. Our data show that genome-wide reshaping of seed DNA methylation is conserved among angiosperms and has a profound effect on gene expression in cereal crops.


Assuntos
Metilação de DNA , DNA de Plantas/genética , Oryza/genética , DNA Glicosilases/genética , DNA de Plantas/metabolismo , Endosperma/genética , Endosperma/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Oryza/metabolismo , Filogenia
8.
bioRxiv ; 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37808856

RESUMO

Maternal intervillous monocytes (MIMs) and fetal Hofbauer cells (HBCs) are myeloid-derived immune cells at the maternal-fetal interface. Little is known regarding the molecular phenotypes and roles of these distinct monocyte/macrophage populations. Here, we used RNA sequencing to investigate the transcriptional profiles of MIMs and HBCs in six normal term pregnancies. Our analyses revealed distinct transcriptomes of MIMs and HBCs. Genes involved in differentiation and cell organization pathways were more highly expressed in MIMs vs. HBCs. In contrast, HBCs had higher expression of genes involved in inflammatory responses and cell surface receptor signaling. Maternal gravidity influenced monocyte programming, as expression of pro-inflammatory molecules was significantly higher in MIMs from multigravidas compared to primigravidas. In HBCs, multigravidas displayed enrichment of gene pathways involved in cell-cell signaling and differentiation. In summary, our results demonstrated that MIMs and HBCs have highly divergent transcriptional signatures, reflecting their distinct origins, locations, functions, and roles in inflammatory responses. Our data further suggested that maternal gravidity influences the gene signatures of MIMs and HBCs, potentially modulating the interplay between tolerance and trained immunity. The phenomenon of reproductive immune memory may play a novel role in the differential susceptibility of primigravidas to pregnancy complications.

9.
Dev Cell ; 56(9): 1238-1252.e5, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33891899

RESUMO

The human placenta and its specialized cytotrophoblasts rapidly develop, have a compressed lifespan, govern pregnancy outcomes, and program the offspring's health. Understanding the molecular underpinnings of these behaviors informs development and disease. Profiling the extraembryonic epigenome and transcriptome during the 2nd and 3rd trimesters revealed H3K9 trimethylation overlapping deeply DNA hypomethylated domains with reduced gene expression and compartment-specific patterns that illuminated their functions. Cytotrophoblast DNA methylation increased, and several key histone modifications decreased across the genome as pregnancy advanced. Cytotrophoblasts from severe preeclampsia had substantially increased H3K27 acetylation globally and at genes that are normally downregulated at term but upregulated in this syndrome. In addition, some cases had an immature pattern of H3K27ac peaks, and others showed evidence of accelerated aging, suggesting subtype-specific alterations in severe preeclampsia. Thus, the cytotrophoblast epigenome dramatically reprograms during pregnancy, placental disease is associated with failures in this process, and H3K27 hyperacetylation is a feature of severe preeclampsia.


Assuntos
Epigenoma , Doenças Placentárias/genética , Doenças Placentárias/patologia , Trofoblastos/metabolismo , Trofoblastos/patologia , Acetilação , Metilação de DNA/genética , Elementos Facilitadores Genéticos/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Idade Gestacional , Histonas/metabolismo , Humanos , Lisina/metabolismo , Pré-Eclâmpsia/genética , Gravidez , Processamento de Proteína Pós-Traducional
10.
Trends Plant Sci ; 19(5): 320-6, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24618094

RESUMO

Transposons are selfish genetic sequences that can increase their copy number and inflict substantial damage on their hosts. To combat these genomic parasites, plants have evolved multiple pathways to identify and silence transposons by methylating their DNA. Plants have also evolved mechanisms to limit the collateral damage from the antitransposon machinery. In this review, we examine recent developments that have elucidated many of the molecular workings of these pathways. We also highlight the evidence that the methylation and demethylation pathways interact, indicating that plants have a highly sophisticated, integrated system of transposon defense that has an important role in the regulation of gene expression.


Assuntos
Metilação de DNA , Elementos de DNA Transponíveis/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta/genética , Plantas/genética , Biologia de Sistemas , Evolução Molecular , Inativação Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA