Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Skin Res Technol ; 30(4): e13667, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38558437

RESUMO

INTRODUCTION: Polynucleotides (PN) are becoming more prominent in aesthetic medicine. However, the structural characteristics of PN have not been published and PN from different companies may have different structural characteristics. This study aimed to elucidate the structural attributes of DOT™ PN and distinguish differences with polydeoxyribonucleotides (PDRN) using high-resolution scanning electron microscopy (SEM) imaging. MATERIALS AND METHODS: DOT™ PN was examined using a Quanta 3-D field emission gun (FEG) Scanning Electron Microscope (SEM). Sample preparation involved cryogenic cooling, cleavage, etching, and metal coating to facilitate high-resolution imaging. Cryo-FIB/SEM techniques were employed for in-depth structural analysis. RESULTS: PDRN exhibited an amorphous structure without distinct features. In contrast, DOT™ PN displayed well-defined polyhedral shapes with smooth, uniformly thick walls. These cells were empty, with diameters ranging from 3 to 8 micrometers, forming a seamless tessellation pattern. DISCUSSION: DOT™ PN's distinct geometric tessellation design conforms to the principles of biotensegrity, providing both structural reinforcement and integrity. The presence of delicate partitions and vacant compartments hints at possible uses in the field of pharmaceutical delivery systems. Within the realms of beauty enhancement and regenerative medicine, DOT™ PN's capacity to bolster cell growth and tissue mending could potentially transform approaches to rejuvenation treatments. Its adaptability becomes apparent when considering its contributions to drug administration and surgical procedures. CONCLUSION: This study unveils the intricate structural scaffold features of DOT™ PN for the first time, setting it apart from PDRN and inspiring innovation in biomedicine and materials science. DOT™ PN's unique attributes open doors to potential applications across healthcare and beyond.


Assuntos
Polinucleotídeos , Humanos , Microscopia Eletrônica de Varredura
2.
Skin Res Technol ; 29(11): e13529, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38009043

RESUMO

BACKGROUND: An intradermal injection is a medical procedure that involves administering a small amount of medication or substance into the dermal layer of the skin. This research focused on identifying the most suitable injection needle for precise intradermal administration of skin boosters. METHODS: The study involved conducting intradermal injections on four cadavers and participants using a 2 mm length, 34-gauge needle (N-Finders, Inc., South Korea). During the cadaveric study, the polynucleotide prefilled syringe was dyed green, and an anatomist performed dissections, removing only the skin layer. Ultrasonographic observations were carried out to ensure accurate intradermal injection placement. RESULTS: In all four cadavers, the facial injections at the anterior cheek region were precisely administered intradermally at a 30-degree injection angle. However, the 90-degree injection was found just below the dermal layer upon skin layer removal. DISCUSSION: The findings suggest that using a 2 mm needle length allows for easy and convenient intradermal injections.


Assuntos
Agulhas , Pele , Humanos , Injeções Intradérmicas , Pele/diagnóstico por imagem , Preparações Farmacêuticas , Ultrassonografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA