Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Malar J ; 13: 394, 2014 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-25288380

RESUMO

BACKGROUND: Intensified efforts are urgently needed to contain and eliminate artemisinin-resistant Plasmodium falciparum in the Greater Mekong subregion. Médecins Sans Frontières plans to support the Ministry of Health in eliminating P. falciparum in an area with artemisinin resistance in the north-east of Cambodia. As a first step, the prevalence of Plasmodium spp. and the presence of mutations associated with artemisinin resistance were evaluated in two districts of Preah Vihear Province. METHODS: A cross-sectional population-based study using a two-stage cluster sampling was conducted in the rural districts of Chhaeb and Chey Saen, from September to October 2013. In each district, 30 clusters of 10 households were randomly selected. In total, blood samples were collected for 1,275 participants in Chhaeb and 1,224 in Chey Saen. Prevalence of Plasmodium spp. was assessed by PCR on dried blood spots. Plasmodium falciparum positive samples were screened for mutations in the K13-propeller domain gene (PF3D7_1343700). RESULT: The prevalence of Plasmodium spp. was estimated at 1.49% (95% CI 0.71-3.11%) in Chhaeb and 2.61% (95% CI 1.45-4.66%) in Chey Saen. Twenty-seven samples were positive for P. falciparum, giving a prevalence of 0.16% (95% CI 0.04-0.65) in Chhaeb and 2.04% (95% CI 1.04-3.99%) in Chey Saen. Only 4.0% of the participants testing positive presented with fever or history of fever. K13-propeller domain mutant type alleles (C580Y and Y493H) were found, only in Chey Saen district, in seven out of 11 P. falciparum positive samples with enough genetic material to allow testing. CONCLUSION: The overall prevalence of P. falciparum was low in both districts but parasites presenting mutations in the K13-propeller domain gene, strongly associated with artemisinin-resistance, are circulating in Chey Saen.The prevalence might be underestimated because of the absentees - mainly forest workers - and the workers of private companies who were not included in the study. These results confirm the need to urgently develop and implement targeted interventions to contain and eliminate P. falciparum malaria in this district before it spreads to other areas.


Assuntos
Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Plasmodium falciparum/efeitos dos fármacos , Adolescente , Adulto , Antimaláricos/farmacologia , Artemisininas/farmacologia , Camboja/epidemiologia , Criança , Pré-Escolar , Estudos Transversais , Resistência a Medicamentos , Feminino , Humanos , Lactente , Recém-Nascido , Malária Falciparum/prevenção & controle , Masculino , Pessoa de Meia-Idade , Mutação , Plasmodium falciparum/genética , Prevalência , Adulto Jovem
2.
PLoS One ; 5(2): e9424, 2010 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-20195531

RESUMO

Artemisinin, a thapsigargin-like sesquiterpene has been shown to inhibit the Plasmodium falciparum sarco/endoplasmic reticulum calcium-ATPase PfSERCA. To collect baseline pfserca sequence information before field deployment of Artemisinin-based Combination therapies that may select mutant parasites, we conducted a sequence analysis of 100 isolates from multiple sites in Africa, Asia and South America. Coding sequence diversity was large, with 29 mutated codons, including 32 SNPs (average of one SNP/115 bp), of which 19 were novel mutations. Most SNP detected in this study were clustered within a region in the cytosolic head of the protein. The PfSERCA functional domains were very well conserved, with non synonymous mutations located outside the functional domains, except for the S769N mutation associated in French Guiana with elevated IC(50) for artemether. The S769N mutation is located close to the hinge of the headpiece, which in other species modulates calcium affinity and in consequence efficacy of inhibitors, possibly linking calcium homeostasis to drug resistance. Genetic diversity was highest in Senegal, Brazil and French Guiana, and few mutations were identified in Asia. Population genetic analysis was conducted for a partial fragment of the gene encompassing nucleotide coordinates 87-2862 (unambiguous sequence available for 96 isolates). This supported a geographic clustering, with a separation between Old and New World samples and one dominant ancestral haplotype. Genetic drift alone cannot explain the observed polymorphism, suggesting that other evolutionary mechanisms are operating. One possible contributor could be the frequency of haemoglobinopathies that are associated with calcium dysregulation in the erythrocyte.


Assuntos
ATPases Transportadoras de Cálcio/genética , Variação Genética , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , África , América , Sequência de Aminoácidos , Animais , Antimaláricos/farmacologia , Artemisininas/farmacologia , Ásia , Sítios de Ligação/genética , DNA de Protozoário/química , DNA de Protozoário/genética , Resistência a Medicamentos/genética , Geografia , Humanos , Malária Falciparum/parasitologia , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Testes de Sensibilidade Parasitária , Filogenia , Plasmodium falciparum/classificação , Plasmodium falciparum/efeitos dos fármacos , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA