Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biomaterials ; 311: 122667, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38878480

RESUMO

Mesenchymal stem cells (MSCs) have garnered attention for their regenerative and immunomodulatory capabilities in clinical trials for various diseases. However, the effectiveness of MSC-based therapies, especially for conditions like graft-versus-host disease (GvHD), remains uncertain. The cytokine interferon (IFN)-γ has been known to enhance the immunosuppressive properties of MSCs through cell-to-cell interactions and soluble factors. In this study, we observed that IFN-γ-treated MSCs upregulated the expression of carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), associated with immune evasion through the inhibition of natural killer (NK) cell cytotoxicity. To co-opt this immunomodulatory function, we generated MSCs overexpressing CEACAM1 and found that CEACAM1-engineered MSCs significantly reduced NK cell activation and cytotoxicity via cell-to-cell interaction, independent of NKG2D ligand regulation. Furthermore, CEACAM1-engineered MSCs effectively inhibited the proliferation and activation of T cells along with the inflammatory responses of monocytes. In a humanized GvHD mouse model, CEACAM1-MSCs, particularly CEACAM1-4S-MSCs, demonstrated therapeutic potential by improving survival and alleviating symptoms. These findings suggest that CEACAM1 expression on MSCs contributes to MSC-mediated regulation of immune responses and that CEACAM1-engineered MSC could have therapeutic potential in conditions involving immune dysregulation.


Assuntos
Antígenos CD , Moléculas de Adesão Celular , Comunicação Celular , Doença Enxerto-Hospedeiro , Células Matadoras Naturais , Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Animais , Antígenos CD/metabolismo , Humanos , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/terapia , Moléculas de Adesão Celular/metabolismo , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Imunomodulação , Camundongos , Interferon gama/metabolismo , Transplante de Células-Tronco Mesenquimais , Proliferação de Células/efeitos dos fármacos , Engenharia Celular/métodos
2.
Cell Signal ; 115: 111029, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38163576

RESUMO

Sirtuin 3 (SIRT3) regulates mitochondrial function as a mitochondrial deacetylase during oxidative stress. However, the specific regulatory mechanism and function of SIRT3 in radioresistant cancer cells are unclear. In this study, we aim to investigate how SIRT3 determines the susceptibility to glucose deprivation and its regulation in p53-based radioresistant head and neck cancer cells. We observed mitochondrial function using two established isogenic radioresistant subclones (HN3R-A [p53 null] and HN3R-B [p53 R282W]) with intratumoral p53 heterogeneity. Cell counting analysis was performed to evaluate cell proliferation and cell death. The correlation between the regulation of SIRT3 and enhancer of zeste homolog 2 (EZH2) was confirmed by immunoblotting and chromatin immunoprecipitation assay. p53-deficient radioresistant cells (HN3R-A) expression reduced SIRT3 levels and increased sensitivity to glucose deprivation due to mitochondrial dysfunction compared to other cells. In these cells, activation of SIRT3 significantly prevented glucose deprivation-induced cell death, whereas the loss of SIRT3 increased the susceptibility to glucose deficiency. We discovered that radiation-induced EZH2 directly binds to the SIRT3 promoter and represses the expression. Conversely, inhibiting EZH2 increased the expression of SIRT3 through epigenetic changes. Our findings indicate that p53-deficient radioresistant cells with enhanced EZH2 exhibit increased sensitivity to glucose deprivation due to SIRT3 suppression. The regulation of SIRT3 by EZH2 plays a critical role in determining the cell response to glucose deficiency in radioresistant cancer cells. Therefore, EZH2-dependent SIRT3 could be used as a predictive biomarker to select treatment options for patients with radiation-resistance.


Assuntos
Neoplasias de Cabeça e Pescoço , Sirtuína 3 , Humanos , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Sirtuína 3/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Neoplasias de Cabeça e Pescoço/radioterapia , Estresse Oxidativo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA