Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Plant Cell Physiol ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38957969

RESUMO

The INDUCER OF CBF EXPRESSION 1/C-REPEAT BINDING FACTOR (ICE1/CBF) pathway plays a crucial role in plant responses to cold stress, impacting growth and development. Here, we demonstrated that ATBS1-INTERACTING FACTOR 2 (AIF2), a non-DNA-binding basic helix-loop-helix transcription factor, positively regulates freezing tolerance through the ICE1/CBF-induced cold tolerance pathway in Arabidopsis. Cold stress transcriptionally upregulated AIF2 expression and induced AIF2 phosphorylation, thereby stabilizing the AIF2 protein during early stages of cold acclimation. The AIF2 loss-of-function mutant, aif2-1, exhibited heightened sensitivity to freezing before and after cold acclimation. In contrast, ectopic expression of AIF2, but not the C-terminal-deleted AIF2 variant, restored freezing tolerance. AIF2 enhanced ICE1 stability during cold acclimation and promoted the transcriptional expression of CBFs and downstream cold-responsive genes, ultimately enhancing plant tolerance to freezing stress. MITOGEN-ACTIVATED PROTEIN KINASES 3 and 6 (MPK3/6), known negative regulators of freezing tolerance, interacted with and phosphorylated AIF2, subjecting it to protein degradation. Furthermore, transient co-expression of MPK3/6 with AIF2 and ICE1 downregulated AIF2/ICE1-induced transactivation of CBF2 expression. AIF2 interacted preferentially with BIN2 and MPK3/6 during the early and later stages of cold acclimation, respectively, thereby differentially regulating AIF2 activity in a cold acclimation time-dependent manner. Moreover, AIF2 acted additively in a gain-of-function mutant of BRASSINAZOLE-RESISTANT 1 (BZR1; bzr1-1D) and a triple knockout mutant of BRASSINOSTEROID-INSENSITIVE 2 (BIN2) and its homologs (bin2bil1bil2) to induce CBFs-mediated freezing tolerance. This suggests that cold-induced AIF2 coordinates freezing tolerance along with BZR1 and BIN2, key positive and negative components, respectively, of brassinosteroid signaling pathways.

2.
Small ; 20(9): e2306438, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37847910

RESUMO

The degradation of current Li-ion batteries (LIBs) hinders their use in electronic devices, electric vehicles, and other applications at low temperatures, particularly in extreme environments like the polar regions and outer space. This study presents a pseudocapacitive-type niobium tungsten oxides (NbWO) electrode material combined with tailored electrolytes, enabling extreme low-temperature battery cycling for the first time. The synthesized NbWO material exhibits analogous structural properties to previous studies. Its homogenous atom distribution can further facilitate Li+ diffusion, while its pseudocapacitive Li+ storage mechanism enables faster Li+ reactions. Notably, the NbWO electrode material exhibits remarkable battery performance even at -60 and -100 °C, showcasing capacities of ≈90 and ≈75 mAh g-1 , respectively. The electrolytes, which have demonstrated favorable Li+ transport attributes at low temperatures in the earlier investigations, now enable extreme low-temperature battery operations, a feat not achievable with either NbWO or the electrolytes independently. Moreover, the outcomes extend to -120 °C and encompass a pouch-type cell configuration at -100 °C, albeit with reduced performance. This study highlights the potential of NbWO for developing batteries for their use in extremely frigid environments.

3.
Mol Cancer ; 22(1): 200, 2023 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-38066564

RESUMO

BACKGROUND: Commercial anti-CD19 chimeric antigen receptor T-cell therapies (CART19) are efficacious against advanced B-cell non-Hodgkin lymphoma (NHL); however, most patients ultimately relapse. Several mechanisms contribute to this failure, including CD19-negative escape and CAR T dysfunction. All four commercial CART19 products utilize the FMC63 single-chain variable fragment (scFv) specific to a CD19 membrane-distal epitope and characterized by slow association (on) and dissociation (off) rates. We hypothesized that a novel anti-CD19 scFv that engages an alternative CD19 membrane-proximal epitope independent of FMC63 and that is characterized by faster on- and off-rates could mitigate CART19 failure and improve clinical efficacy. METHODS: We developed an autologous CART19 product with 4-1BB co-stimulation using a novel humanized chicken antibody (h1218). This antibody is specific to a membrane-proximal CD19 epitope and harbors faster on/off rates compared to FMC63. We tested h1218-CART19 in vitro and in vivo using FMC63-CART19-resistant models. We conducted a first-in-human multi-center phase I clinical trial to test AT101 (clinical-grade h1218-CART19) in patients with relapsed or refractory (r/r) NHL. RESULTS: Preclinically, h1218- but not FMC63-CART19 were able to effectively eradicate lymphomas expressing CD19 point mutations (L174V and R163L) or co-expressing FMC63-CAR19 as found in patients relapsing after FMC63-CART19. Furthermore, h1218-CART19 exhibited enhanced killing of B-cell malignancies in vitro and in vivo compared with FMC63-CART19. Mechanistically, we found that h1218-CART19 had reduced activation-induced cell death (AICD) and enhanced expansion compared to FMC63-CART19 owing to faster on- and off-rates. Based on these preclinical results, we performed a phase I dose-escalation trial, testing three dose levels (DL) of AT101 (the GMP version of h1218) using a 3 + 3 design. In 12 treated patients (7 DLBCL, 3 FL, 1 MCL, and 1 MZL), AT101 showed a promising safety profile with 8.3% grade 3 CRS (n = 1) and 8.3% grade 4 ICANS (n = 1). In the whole cohort, the overall response rate was 91.7%, with a complete response rate of 75.0%, which improved to 100% in DL-2 and -3. AT101 expansion correlates with CR and B-cell aplasia. CONCLUSIONS: We developed a novel, safe, and potent CART19 product that recognizes a membrane-proximal domain of CD19 with fast on- and off-rates and showed significant efficacy and promising safety in patients with relapsed B-cell NHL. TRIAL REGISTRATION: NCT05338931; Date: 2022-04-01.


Assuntos
Linfoma não Hodgkin , Receptores de Antígenos de Linfócitos T , Receptores de Antígenos Quiméricos , Humanos , Anticorpos , Antígenos CD19 , Epitopos/metabolismo , Imunoterapia Adotiva/efeitos adversos , Linfoma não Hodgkin/terapia , Linfoma não Hodgkin/metabolismo , Recidiva Local de Neoplasia/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Receptores de Antígenos de Linfócitos T/antagonistas & inibidores
4.
Plant Physiol ; 189(3): 1774-1793, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35417014

RESUMO

Leaf senescence is the final stage of leaf development and can be triggered by various external factors, such as hormones and light deprivation. In this study, we demonstrate that the overexpression of the GTP-bound form of Arabidopsis (Arabidopsis thaliana) Ran1 (a Ras-related nuclear small G-protein, AtRan1) efficiently promotes age-dependent and dark-triggered leaf senescence, while Ran-GDP has the opposite effect. Transcriptome analysis comparing AtRan1-GDP- and AtRan1-GTP-overexpressing transgenic plants (Ran1T27Nox and Ran1G22Vox, respectively) revealed that differentially expressed genes (DEGs) related to the senescence-promoting hormones salicylic acid (SA), jasmonic acid, abscisic acid, and ethylene (ET) were significantly upregulated in dark-triggered senescing leaves of Ran1G22Vox, indicating that these hormones are actively involved in Ran-GTP/-GDP-dependent, dark-triggered leaf senescence. Bioinformatic analysis of the promoter regions of DEGs identified diverse consensus motifs, including the bZIP motif, a common binding site for TGACG-BINDING FACTOR (TGA) transcription factors. Interestingly, TGA2 and its interactor, NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 (NPR1), which are two positive transcriptional regulators of SA signaling, differed in their extent of accumulation in the nucleus versus cytoplasm of Ran1T27Nox and Ran1G22Vox plants. Moreover, SA-induced, Ran-GTP-/-GDP-dependent functions of NPR1 included genome-wide global transcriptional reprogramming of genes involved in cell death, aging, and chloroplast organization. Furthermore, the expression of AtRan1-GTP in SA signaling-defective npr1 and SA biosynthesis-deficient SA-induction deficient2 genetic backgrounds abolished the effects of AtRan1-GTP, thus retarding age-promoted leaf senescence. However, ET-induced leaf senescence was not mediated by Ran machinery-dependent nuclear shuttling of ETHYLENE-INSENSITIVE3 and ETHYLENE-INSENSITIVE3-LIKE1 proteins. We conclude that Ran-GTP/-GDP-dependent nuclear accumulation of NPR1 and TGA2 represents another regulatory node for SA-induced leaf senescence.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis , Núcleo Celular/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteína ran de Ligação ao GTP/metabolismo , Arabidopsis/metabolismo , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Hormônios/metabolismo , Hormônios/farmacologia , Senescência Vegetal , Ácido Salicílico/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
Food Microbiol ; 114: 104302, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37290878

RESUMO

The objectives of this study were to evaluate the survival of high hydrostatic pressure (HHP)-treated Salmonella Typhimurium, Escherichia coli O157:H7, and Listeria monocytogenes in apple puree, as well as to determine the levels of HHP-induced cell injury according to the pressure level, holding time, and pH of apple puree. Apple puree was inoculated with three foodborne pathogens and treated at pressures of 300-600 MPa for up to 7 min at 22 °C using HHP equipment. Increasing the pressure level and lowering the pH of apple puree led to larger microbial reductions, and E. coli O157:H7 showed higher resistance compared to S. Typhimurium and L. monocytogenes. Besides, approximately 5-log injured cells of E. coli O157:H7 were induced in apple puree at pH 3.5 and 3.8. HHP treatment at 500 MPa for 2 min effectively achieved complete inactivation of the three pathogens in apple puree at pH 3.5. For apple puree at pH 3.8, more than 2 min treatment of HHP at 600 MPa is seemingly needed to achieve complete inactivation of the three pathogens. Transmission electron microscopy analysis was conducted to identify ultrastructural changes in the injured or dead cells after HHP treatment. Plasmolysis and uneven cavities in the cytoplasm were observed in injured cells, and additional deformations, such as distorted and rough cell envelopes, and cell disruption occurred in dead cells. No changes in solid soluble content (SSC) and color of apple puree were observed after HHP treatment, and no differences were detected between control and HHP-treated samples during 10 d of storage at 5 °C. The results of this study could be useful in determining the acidity of apple purees or the treatment time at specific acidity levels when applying the HHP processing.


Assuntos
Escherichia coli O157 , Listeria monocytogenes , Malus , Pressão Hidrostática , Microbiologia de Alimentos , Concentração de Íons de Hidrogênio , Contagem de Colônia Microbiana
6.
Int J Mol Sci ; 24(22)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38003598

RESUMO

Parkinson's disease (PD) is a globally common progressive neurodegenerative disease resulting from the loss of dopaminergic neurons in the brain. Increased α-synuclein (α-syn) is associated with the degeneration of dopaminergic neurons and non-motor symptoms like gastrointestinal disorders. In this study, we investigated the association between serum/glucocorticoid-related kinase 1 (SGK1) and α-syn in the colon of a PD mouse model. SGK1 and α-syn expression patterns were opposite in the surrounding colon tissue, with decreased SGK1 expression and increased α-syn expression in the PD group. Immunofluorescence analyses revealed the colocation of SGK1 and α-syn; the PD group demonstrated weaker SGK1 expression and stronger α-syn expression than the control group. Immunoblotting analysis showed that Na+/K+ pump ATPase α1 expression levels were significantly increased in the PD group. In SW480 cells with SGK1 knockdown using SGK1 siRNA, decreasing SGK1 levels corresponded with significant increases in the expression levels of α-syn and ATPase α1. These results suggest that SGK1 significantly regulates Na+/K+ pump ATPase, influencing the relationship between electrolyte balance and fecal formation in the PD mouse model. Gastrointestinal disorders are some of the major prodromal symptoms of PD. Therefore, modulating SGK1 expression could be an important strategy for controlling PD.


Assuntos
Gastroenteropatias , Doenças Neurodegenerativas , Doença de Parkinson , Animais , Camundongos , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Glucocorticoides/metabolismo , Doenças Neurodegenerativas/metabolismo , Adenosina Trifosfatases/metabolismo , Gastroenteropatias/metabolismo , Neurônios Dopaminérgicos/metabolismo , Modelos Animais de Doenças
7.
Small ; 18(27): e2202209, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35686333

RESUMO

Silicon monoxide (SiO)-based materials have great potential as high-capacity anode materials for lithium-ion batteries. However, they suffer from a low initial coulombic efficiency (ICE) and poor cycle stability, which prevent their successful implementation into commercial lithium-ion batteries. Despite considerable efforts in recent decades, their low ICE and poor cycle stability cannot be resolved at the same time. Here, it is demonstrated that the topological optimization of the prelithiated SiO materials is highly effective in improving both ICE and capacity retention. Laser-assisted atom probe tomography combined with thermogravimetry and differential scanning calorimetry reveals that two exothermic reactions related to microstructural evolution are key in optimizing the domain size of the Si active phase and Li2 SiO3 buffer phase, and their topological arrangements in prelithiated SiO materials. The optimized prelithiated SiO, heat-treated at 650 °C, shows higher capacity retention of 73.4% and lower thickness changes of 68% after 300 cycles than those treated at other temperatures, with high ICE of ≈90% and reversible capacity of 1164 mAh g-1 . Such excellent electrochemical properties of the prelithiated SiO electrode originate from its optimized topological arrangement of active Si phase and Li2 SiO3 inactive buffer phase.

8.
Sensors (Basel) ; 22(18)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36146179

RESUMO

This paper proposes a novel method for occupancy map building using a mixture of Gaussian processes. Gaussian processes have proven to be highly flexible and accurate for a robotic occupancy mapping problem, yet the high computational complexity has been a critical barrier for large-scale applications. We consider clustering the data into small, manageable subsets and applying a mixture of Gaussian processes. One of the problems in clustering is that the number of groups is not known a priori, thus requiring inputs from experts. We propose two efficient clustering methods utilizing (1) a Dirichlet process and (2) geometrical information in the context of occupancy mapping. We will show that the Dirichlet process-based clustering can significantly speed up the training step of the Gaussian process and if geometrical features, such as line features, are available, they can further improve the clustering accuracy. We will provide simulation results, analyze the performance and demonstrate the benefits of the proposed methods.

9.
Molecules ; 28(1)2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36615521

RESUMO

Photocatalytic systems for CO2 reduction operate via complicated multi-electron transfer (ET) processes. A complete understanding of these ET dynamics can be challenging but is key to improving the efficiency of CO2 conversion. Here, we report the ET dynamics of a series of zinc porphyrin derivatives (ZnPs) in the photosensitization reactions where sequential ET reactions of ZnPs occur with a sacrificial electron donor (SED) and then with TiO2. We employed picosecond time-resolved fluorescence spectroscopy and femtosecond transient absorption (TA) measurement to investigate the fast ET dynamics concealed in the steady-state or slow time-resolved measurements. As a result, Stern-Volmer analysis of fluorescence lifetimes evidenced that the reaction of photoexcited ZnPs with SED involves static and dynamic quenching. The global fits to the TA spectra identified much faster ET dynamics on a few nanosecond-time scales in the reactions of one-electron reduced species (ZnPs•-) with TiO2 compared to previously measured minute-scale quenching dynamics and even diffusion rates. We propose that these dynamics report the ET dynamics of ZnPs•- formed at adjacent TiO2 without involving diffusion. This study highlights the importance of ultrafast time-resolved spectroscopy for elucidating the detailed ET dynamics in photosensitization reactions.

10.
J Exp Bot ; 71(4): 1475-1490, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-31783407

RESUMO

ATBS1-INTERACTING FACTOR 2 (AIF2) is a non-DNA-binding basic helix-loop-helix (bHLH) transcription factor. We demonstrated that AIF2 retards dark-triggered and brassinosteroid (BR)-induced leaf senescence in Arabidopsis thaliana. Dark-triggered BR synthesis and the subsequent activation of BRASSINAZOLE RESISTANT 1 (BZR1), a BR signaling positive regulator, result in BZR1 binding to the AIF2 promoter in a dark-dependent manner, reducing AIF2 transcript levels and accelerating senescence. BR-induced down-regulation of AIF2 protein stability partly contributes to the progression of dark-induced leaf senescence. Furthermore, AIF2 interacts with INDUCER OF CBF EXPRESSION 1 (ICE1) via their C-termini. Formation of the AIF2-ICE1 complex and subsequent up-regulation of C-REPEAT BINDING FACTORs (CBFs) negatively regulates dark-triggered, BR-induced leaf senescence. This involves antagonistic down-regulation of PHYTOCHROME INTERACTING FACTOR 4 (PIF4), modulated through AIF2-dependent inhibition of ICE1's binding to the promoter. PIF4-dependent activities respond to dark-induced early senescence and may promote BR synthesis and BZR1 activation to suppress AIF2 and accelerate dark-induced senescence. Taken together, these findings suggest a coordination of AIF2 and ICE1 functions in maintaining stay-green traits.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Brassinosteroides , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição
11.
Neurobiol Dis ; 130: 104519, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31233882

RESUMO

The intraneuronal aggregates of hyperphosphorylated and misfolded tau (neurofibrillary tangles, NFTs) cause a stereotypical spatiotemporal Alzheimer's disease (AD) progression that correlates with the severity of the associated cognitive decline. Kinase activity contributes to the balance between neuron survival and cell death. Hyperactivation of kinases including the conventional protein kinase C (PKC) is a defective molecular event accompanying associative memory loss, tau phosphorylation, and progression of AD or related neurodegenerative diseases. Here, we investigated the ability of small therapeutic compounds (a custom library) to improve tau-induced rough-eye phenotype in a Drosophila melanogaster model of frontotemporal dementia. We also assessed the tau phosphorylation in vivo and selected hit compounds. Among the potential hits, we investigated Ro 31-8220, described earlier as a potent PKCα inhibitor. Ro 31-8220 robustly improved the rough-eye phenotype, reduced phosphorylated tau species in vitro and in vivo, reversed tau-induced memory impairment, and improved the fly motor functions. In a human neuroblastoma cell line, Ro 31-8220 reduced the PKC activity and the tau phosphorylation pattern, but we also have to acknowledge the compound's wide range of biological activity. Nevertheless, Ro 31-8220 is a novel therapeutic mitigator of tau-induced neurotoxocity.


Assuntos
Demência Frontotemporal/metabolismo , Indóis/farmacologia , Emaranhados Neurofibrilares/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Proteínas tau/metabolismo , Animais , Modelos Animais de Doenças , Drosophila melanogaster , Avaliação Pré-Clínica de Medicamentos , Emaranhados Neurofibrilares/metabolismo , Neurônios/metabolismo , Fosforilação/efeitos dos fármacos
12.
Ecotoxicol Environ Saf ; 172: 364-372, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30731267

RESUMO

Potentiality of the use of tuna byproducts as a fish-meal replacement on Nile tilapia (Oreochromis niloticus) was examined for 84 weeks by tracking the concentrations of cadmium and mercury in the internal organs, muscles and fish whole body through generation including their immature eggs and their larvae. The results confirmed that the tuna byproducts can be used as a fish-meal substitute in tilapia aquaculture, because their acceptable ranges for cadmium and mercury consequently did not exceed the food safety values (both < 0.5 mg kg-1), despite their proportional increases in the fish body. The use of tuna byproducts as a protein source is expected to reduce the cost of feed with other fishmeal substitutes in tilapia aquaculture. However, fish (flounder) indiscriminately consuming tuna byproduct feed were prohibited and recalls of sales were issued by the government (July 2018, Republic of Korea), as the threshold for mercury in the fish bodies had been exceeded (0.6-0.8 mg kg-1). Further study of the use of tuna byproducts as fishmeal replacements for other species in aquaculture is needed, as concentration ratios can vary depending on the species.


Assuntos
Ração Animal/análise , Aquicultura/métodos , Tilápia , Atum , Aminoácidos/análise , Animais , Cádmio/análise , Dieta/veterinária , Linguado/metabolismo , Contaminação de Alimentos , Inocuidade dos Alimentos , Larva/metabolismo , Mercúrio/análise , República da Coreia
13.
Plant Cell Physiol ; 58(2): 227-239, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28069895

RESUMO

Brassinosteroids (BRs) are plant polyhydroxy-steroids that play important roles in plant growth and development via extensive signal integration through direct interactions between regulatory components of different signaling pathways. Recent studies have shown that diverse helix-loop-helix/basic helix-loop-helix (HLH/bHLH) family proteins are actively involved in control of BR signaling pathways and interact with other signaling pathways. In this study, we show that ATBS1-INTERACTING FACTOR 2 (AIF2), a nuclear-localized atypical bHLH transcription factor, specifically interacts with BRASSINOSTEROID-INSENSITIVE 2 (BIN2) among other BR signaling molecules. Overexpression of AIF2 down-regulated transcript expression of growth-promoting genes, thus resulting in retardation of growth. AIF2 renders plants hyposensitive to BR-induced root growth inhibition, but shows little effects on BR-promoted hypocotyl elongation. Notably, AIF2 was dephosphorylated by BR, and the dephosphorylated AIF2 was subject to proteasome-mediated degradation. AIF2 degradation was greatly induced by BR and ABA, but relatively slightly by other hormones such as auxin, gibberellin, cytokinin and ethylene. Moreover, AIF2 transcription was significantly suppressed by a BRI1/BZR1-mediated BR signaling pathway through a direct binding of BRASSINAZOLE RESISTANT 1 (BZR1) to the BR response element (BRRE) region of the AIF2 promoter. In conclusion, our study suggests that BIN2-driven AIF2 phosphorylation could augment the BIN2/AIF2-mediated negative circuit of BR signaling pathways, and the BR-induced transcriptional repression and protein degradation negatively regulate AIF2 transcription factor, reinforcing the BZR1/BES1-mediated positive BR signaling pathway.


Assuntos
Brassinosteroides/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Arabidopsis , Fosforilação/genética , Fosforilação/fisiologia , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo
14.
Eur J Appl Physiol ; 116(5): 947-57, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27001664

RESUMO

PURPOSE: The study aimed to identify single nucleotide polymorphisms (SNPs) that significantly influenced the level of improvement of two kinds of training responses, including maximal O2 uptake (V'O2max) and knee peak torque of healthy adults participating in the high intensity training (HIT) program. The study also aimed to use these SNPs to develop prediction models for individual training responses. METHODS: 79 Healthy volunteers participated in the HIT program. A genome-wide association study, based on 2,391,739 SNPs, was performed to identify SNPs that were significantly associated with gains in V'O2max and knee peak torque, following 9 weeks of the HIT program. To predict two training responses, two independent SNPs sets were determined using linear regression and iterative binary logistic regression analysis. False discovery rate analysis and permutation tests were performed to avoid false-positive findings. RESULTS: To predict gains in V'O2max, 7 SNPs were identified. These SNPs accounted for 26.0 % of the variance in the increment of V'O2max, and discriminated the subjects into three subgroups, non-responders, medium responders, and high responders, with prediction accuracy of 86.1 %. For the knee peak torque, 6 SNPs were identified, and accounted for 27.5 % of the variance in the increment of knee peak torque. The prediction accuracy discriminating the subjects into the three subgroups was estimated as 77.2 %. CONCLUSIONS: Novel SNPs found in this study could explain, and predict inter-individual variability in gains of V'O2max, and knee peak torque. Furthermore, with these genetic markers, a methodology suggested in this study provides a sound approach for the personalized training program.


Assuntos
Exercício Físico/fisiologia , Articulação do Joelho/fisiologia , Joelho/fisiologia , Consumo de Oxigênio/genética , Polimorfismo de Nucleotídeo Único/genética , Adulto , Educação/métodos , Feminino , Estudo de Associação Genômica Ampla/métodos , Humanos , Masculino , Força Muscular/genética , Treinamento Resistido/métodos , Torque
16.
J Exp Bot ; 66(15): 4835-49, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26136267

RESUMO

Previous publications have shown that BRI1 EMS suppressor 1 (BES1), a positive regulator of the brassinosteroid (BR) signalling pathway, enhances cell divisions in the quiescent centre (QC) and stimulates columella stem cell differentiation. Here, it is demonstrated that BZR1, a BES1 homologue, also promotes cell divisions in the QC, but it suppresses columella stem cell differentiation, opposite to the action of BES1. In addition, BR and its BZR1-mediated signalling pathway are shown to alter the expression/subcellular distribution of pin-formed (PINs), which may result in changes in auxin movement. BR promotes intense nuclear accumulation of BZR1 in the root tip area, and the binding of BZR1 to the promoters of several root development-regulating genes, modulating their expression in the root stem cell niche area. These BZR1-mediated signalling cascades may account for both the ectopic activation of QC cell divisions as well as the suppression of the columella stem cell differentiation. They could also inhibit auxin-dependent distal stem cell differentiation by antagonizing the auxin/WOX5-dependent pathway. In conclusion, BZR1-/BES1-mediated BR signalling pathways show differential effects on the maintenance of root apical meristem activities: they stimulate ectopic QC division while they show opposite effects on the differentiation of distal columella stem cells in a BR concentration- and BZR1-/BES1-dependent manner.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Proteínas Nucleares/genética , Triazóis/farmacologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Proteínas de Ligação a DNA , Regulação para Baixo , Ácidos Indolacéticos/metabolismo , Proteínas Nucleares/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/metabolismo
17.
Radiology ; 271(1): 87-95, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24475825

RESUMO

PURPOSE: To evaluate the effectiveness of small interfering RNA (siRNA) targeting matrix metalloproteinase 9 (MMP-9) in suppressing granulation tissue formation caused by bare metallic stent placement in a rat urethral model. MATERIALS AND METHODS: All experiments were approved by the committee of animal research. In 20 Sprague-Dawley male rats (weight range, 300-350 g), a self-expanding metallic bare stent was inserted in the urethra with fluoroscopic guidance. One group of 10 rats (group A) was treated with MMP-9 siRNA/bioreducible branched polyethylenimine-disulfide cross-linked-indocyanine green (bioreducible BPEI-SS-ICG), while the other group of 10 rats (group B) received control siRNA/bioreducible BPEI-SS-ICG treatment. All rats were sacrificed at 4 weeks. The therapeutic effectiveness of the MMP-9 siRNA/bioreducible BPEI-SS-ICG complex was assessed by comparing the two results of retrograde urethrography, histologic examination, and quantification of MMP-9 by using zymography and Western blot analysis between the two groups. The Mann-Whitney U test was used to evaluate differences. RESULTS: Stent placement was successful in all rats without a single case of migration at follow-up. Retrograde urethrography performed 4 weeks after stent placement demonstrated significantly larger luminal diameters of the urethra within the stents in group A compared with those in group B (P = .011). Histologic analysis revealed that the mean percentage of granulation tissue area (P < .001), mean number of epithelial layers (P < .001), and mean thickness of submucosal fibrosis (P < .001) were significantly decreased in group A compared with group B. Meanwhile, the mean density of inflammatory cell infiltration did not significantly differ between the two groups (P = .184). Quantitative analysis disclosed MMP-9 levels to be lower in group A relative to group B, indicating positive inhibition of MMP-9 by MMP-9 siRNA/bioreducible BPEI-SS-ICG. CONCLUSION: MMP-9 siRNA/bioreducible BPEI-SS-ICG is effective for inhibiting granulation tissue formation after bare metallic stent placement in a rat urethral model.


Assuntos
Tecido de Granulação/patologia , Metaloproteinase 9 da Matriz/farmacologia , RNA Interferente Pequeno/farmacologia , Stents , Uretra/patologia , Animais , Western Blotting , Meios de Contraste , Fluoroscopia , Iohexol , Espectroscopia de Ressonância Magnética , Masculino , Metais , Polímeros/farmacologia , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley
18.
Sci Rep ; 14(1): 1140, 2024 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212417

RESUMO

Patients with Parkinson's disease (PD) have gastrointestinal motility disorders, which are common non-motor symptoms. However, the reasons for these motility disorders remain unclear. Increased alpha-synuclein (α-syn) is considered an important factor in peristalsis dysfunction in colonic smooth muscles in patients with PD. In this study, the morphological changes and association between serping1 and α-syn were investigated in the colon of the 1-methyl 4-phenyl 1,2,3,6-tetrahydropyridine-induced chronic PD model. Increased serping1 and α-syn were noted in the colon of the PD model, and decreased serping1 also induced a decrease in α-syn in C2C12 cells. Serping1 is a major regulator of physiological processes in the kallikrein-kinin system, controlling processes including inflammation and vasodilation. The kinin system also comprises bradykinin and bradykinin receptor 1. The factors related to the kallikrein-kinin system, bradykinin, and bradykinin receptor 1 were regulated by serping1 in C2C12 cells. The expression levels of bradykinin and bradykinin receptor 1, modulated by serping1 also increased in the colon of the PD model. These results suggest that the regulation of increased serping1 could alleviate Lewy-type α-synucleinopathy, a characteristic of PD. Furthermore, this study could have a positive effect on the early stages of PD progression because of the perception that α-syn in colonic tissues is present prior to the development of PD motor symptoms.


Assuntos
Gastroenteropatias , Doença de Parkinson , Animais , Humanos , Camundongos , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , alfa-Sinucleína/metabolismo , Bradicinina/farmacologia , Proteína Inibidora do Complemento C1 , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Receptores da Bradicinina
19.
Plant Cell Physiol ; 54(10): 1620-34, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23921992

RESUMO

Brassinosteroids (BRs) activate the BRI1 and BAK1/SERK3 membrane receptor complex, which leads to a wide range of changes in gene expression, plant growth and development. As an initial step to elucidate additional roles of BAK1, we cloned a BAK1-binding protein, BAK1-Associating Receptor-Like Kinase 1 (BARK1), and characterized its gene expression and root phenotypes. BARK1 is a putative membrane LRR-RLK (leucine-rich repeat receptor-like kinase) protein that specifically binds to BAK1 and its homologs. Careful examination of BARK1 expression using transgenic plants expressing a green fluorescent protein (GFP) reporter under the control of the native BARK1 promoter (BARK1p::GFP) revealed that this gene is ubiquitously expressed in most plant tissues, and shows especially strong expression in the xylem vasculature of primary and lateral roots as well as in mature pollen. Interestingly, the expression of the BARK1 gene was increased in the BR biosynthetic loss-of-function mutant, det2, and a loss-of-function mutant of BR signaling, bak1-3. In contrast, this gene was down-regulated in the bzr1-1D plant, which is a BR signal gain-of-function mutant. BARK1-overexpressing transgenic plants clearly enhanced primary root growth in a dose-dependent manner, and their roots were hypersensitive to BR-induced root growth inhibition. In addition, both the number and density of lateral roots were dramatically increased in the BARK1 transgenic plants in a dose-dependent manner. Together with observations that ARF (AUXIN RESPONSE FACTOR) genes are up-regulated in the BARK1 overexpressor, we suggest that the BARK1 overexpressor phenotype with more lateral roots is partly due to the increased expression of ARF genes in this genetic background. In conclusion, BAK1-interacting BARK1 protein may be involved in BR-mediated plant growth and development such as in lateral roots via auxin regulation.


Assuntos
Proteínas de Arabidopsis/genética , Brassinosteroides/farmacologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Proteínas Serina-Treonina Quinases/genética , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/classificação , Proteínas de Arabidopsis/metabolismo , Western Blotting , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Microscopia Confocal , Dados de Sequência Molecular , Fenótipo , Filogenia , Reguladores de Crescimento de Plantas/farmacologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos
20.
J Exp Bot ; 64(5): 1153-65, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23183258

RESUMO

During plant embryogenesis, the apical-basal axis is established and both the shoot apical meristem (SAM) and the root apical meristem (RAM) are formed. In both meristems, there are slowly dividing cells which control the differentiation of their surrounding cells called the organizing centre (OC) and the quiescent centre (QC) in the shoot and root, respectively. These centres with their surrounding initial cells form a 'stem cell niche'. The initial cells eventually differentiate into various plant tissues, giving rise to plant organs such as lateral shoots, flowers, leaves, and lateral roots. Plant hormones are important factors involved in the balance between cell division and differentiation such that plant growth and development are tightly controlled in space and time. No single hormone acts by itself in regulating the meristematic activity in the root meristem. Division and differentiation are controlled by interactions between several hormones. Intensive research on plant stem cells has focused on how cell division is regulated to form specific plant organs and tissues, how differentiation is controlled, and how stem cell fate is coordinated. In this review, recent knowledge pertaining to the role of plant hormones in maintaining root stem cells including the QC is summarized and discussed. Furthermore, we suggest diverse approaches to answering the main question of how root stem cells are regulated and maintained by plant hormones.


Assuntos
Reguladores de Crescimento de Plantas/farmacologia , Raízes de Plantas/citologia , Células-Tronco/citologia , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA