Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Opt Express ; 31(26): 44772-44797, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38178538

RESUMO

To extend the field of view while reducing dimensions of the C-arm, we propose a carbon nanotube (CNT)-based C-arm computed tomography (CT) system with multiple X-ray sources. A prototype system was developed using three CNT X-ray sources, enabling a feasibility study. Geometry calibration and image reconstruction were performed to improve the quality of image acquisition. However, the geometry of the prototype system led to projection truncation for each source and an overlap region of object area covered by each source in the two-dimensional Radon space, necessitating specific corrective measures. We addressed these problems by implementing truncation correction and applying weighting techniques to the overlap region during the image reconstruction phase. Furthermore, to enable image reconstruction with a scan angle less than 360°, we designed a weighting function to solve data redundancy caused by the short scan angle. The accuracy of the geometry calibration method was evaluated via computer simulations. We also quantified the improvements in reconstructed image quality using mean-squared error and structural similarity. Moreover, detector lag correction was applied to address the afterglow observed in the experimental data obtained from the prototype system. Our evaluation of image quality involved comparing reconstructed images obtained with and without incorporating the geometry calibration results and images with and without lag correction. The outcomes of our simulation study and experimental investigation demonstrated the efficacy of our proposed geometry calibration, image reconstruction method, and lag correction in reducing image artifacts.

2.
Mol Ther ; 30(8): 2800-2816, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35526096

RESUMO

Several preclinical studies demonstrate that antitumor efficacy of programmed cell death-1 (PD-1)/programmed death-ligand 1 (PD-L1) blockade can be improved by combination with other checkpoint inhibitors. Lymphocyte-activation gene 3 (LAG-3) is an inhibitory checkpoint receptor involved in T cell exhaustion and tumor immune escape. Here, we describe ABL501, a bispecific antibody targeting LAG-3 and PD-L1 in modulating immune cell responses against tumors. ABL501 that efficiently inhibits both LAG-3 and PD-L1 pathways enhances the activation of effector CD4+ and CD8+ T cells with a higher degree than a combination of single anti-LAG-3 and anti-PD-L1. The augmented effector T cell responses by ABL501 resulted in mitigating regulatory-T-cell-mediated immunosuppression. Mechanistically, the simultaneous binding of ABL501 to LAG-3 and PD-L1 promotes dendritic cell (DC) activation and tumor cell conjugation with T cells that subsequently mounts effective CD8+ T cell responses. ABL501 demonstrates its potent in vivo antitumor efficacy in a humanized xenograft model and with knockin mice expressing human orthologs. The immune profiling analysis of peripheral blood reveals an increased abundance of LAG-3hiPD-1hi memory CD4+ T cell subset in relapsed cholangiocarcinoma patients after gemcitabine plus cisplatin therapy, which are more responsive to ABL501. This study supports the clinical evaluation of ABL501 as a novel cancer immunotherapeutic, and a first-in-human trial has started (NCT05101109).


Assuntos
Anticorpos Biespecíficos , Antígenos CD , Antígeno B7-H1 , Neoplasias , Animais , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico , Antígeno B7-H1/metabolismo , Linfócitos T CD8-Positivos , Células Dendríticas , Camundongos , Neoplasias/tratamento farmacológico , Receptor de Morte Celular Programada 1 , Evasão Tumoral , Proteína do Gene 3 de Ativação de Linfócitos
3.
Int J Mol Sci ; 23(22)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36430421

RESUMO

The development of functional neural circuits in the central nervous system (CNS) requires the production of sufficient numbers of various types of neurons and glial cells, such as astrocytes and oligodendrocytes, at the appropriate periods and regions. Hence, severe neuronal loss of the circuits can cause neurodegenerative diseases such as Huntington's disease (HD), Parkinson's disease (PD), Alzheimer's disease (AD), and Amyotrophic Lateral Sclerosis (ALS). Treatment of such neurodegenerative diseases caused by neuronal loss includes some strategies of cell therapy employing stem cells (such as neural progenitor cells (NPCs)) and gene therapy through cell fate conversion. In this report, we review how bHLH acts as a regulator in neuronal differentiation, reprogramming, and cell fate determination. Moreover, several different researchers are conducting studies to determine the importance of bHLH factors to direct neuronal and glial cell fate specification and differentiation. Therefore, we also investigated the limitations and future directions of conversion or transdifferentiation using bHLH factors.


Assuntos
Células-Tronco Neurais , Doenças Neurodegenerativas , Humanos , Doenças Neurodegenerativas/terapia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Neurogênese , Neurônios/fisiologia
4.
Langmuir ; 31(33): 8989-97, 2015 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-26245829

RESUMO

The rheology of petroleum coke (petcoke) water slurries was investigated with a variety of nonionic and anionic dispersants including poly(ethylene oxide) (PEO)-b-poly(propylene oxide) (PPO)-b-PEO triblock copolymers (trade name: Pluronic, BASF), poly(vinyl alcohol) (PVA), polyvinylpyrrolidone (PVP), poly(ethylene oxide) (PEO), poly(carboxylate acid) (PCA), sodium lignosulfonate (SLS), and poly(acrylic acid) (PAA). Each effective dispersant system shared very similar rheological behavior to the others when examined at the same volume fraction from its maximum petcoke loading. Triblock copolymer, Pluronic F127 (F127), was found to be the best dispersant by comparing the maximum petcoke loading for each dispersant. The yield stress was measured as a function of petcoke loading and dispersant concentration for F127, and a minimum dispersant concentration was observed. An adsorption isotherm and atomic force microscopy (AFM) images reveal that this effective dispersion of petcoke particles by F127 is due to the formation of a uniform monolayer of brushes where hydrophobic PPO domains of F127 adhere to the petcoke surface, while hydrophilic PEO tails fill the gap between petcoke particles. F127 was then compared to other Pluronics with various PEO and PPO chain lengths, and the effects of surface and dispersant hydrophilicity were examined. Finally, xanthan gum (XG) was tested as a stabilizer in combination with F127 for potential industrial application, and F127 appears to break the XG aggregates into smaller aggregates through competitive adsorption, leading to an excellent degree of dispersion but the reduced stability of petcoke slurries.

5.
Clin Cancer Res ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743752

RESUMO

PURPOSE: To overcome the limited efficacy of immune checkpoint blockade, there is a need to find novel cancer immunotherapeutic strategies for the optimal treatment of cancer. The novel anti-4-1BB×PD-L1 bispecific antibody-ABL503 (also known as TJ-L14B)-was designed to simultaneously target PD-L1 and 4-1BB, and demonstrated strong antitumor T-cell responses without considerable toxicity. Here, we investigated how the combination of ABL503 and anti-PD-1 blockade affected the reinvigoration of exhausted tumor-infiltrating CD8+ T cells (CD8+ TILs) and anti-tumor efficacy. EXPERIMENTAL DESIGN: Single cell suspensions of hepatocellular carcinoma and ovarian cancer from treatment-naive patients were used for immunophenotyping of CD8+ TILs and in vitro functional assays. Humanized hPD-1/hPD-L1/h4-1BB triple knock-in mice were used to evaluate the effects of ABL503 and anti-PD-1 blockade in vivo. RESULTS: We observed that ABL503 successfully restored the functions of 4-1BB+ exhausted CD8+ TILs, which were enriched for tumor-specific T cells but unresponsive to anti-PD-1 blockade. Importantly, compared to anti-PD-1 blockade alone, the combination of ABL503 and anti-PD-1 blockade further enhanced the functional restoration of human CD8+ TILs in vitro. Consistently, the combination of ABL503 with anti-PD-1 in vivo significantly alleviated tumor growth, and induced enhanced infiltration and activation of CD8+ TILs. CONCLUSIONS: ABL503-a PD-L1 and 4-1BB dual-targeting bispecific antibody-elicits pronounced additive tumor growth inhibition, with increased infiltration and functionality of exhausted CD8+ T cells, which in turn enhances the anti-cancer effects of anti-PD-1 blockade. These promising findings suggest that ABL503 (TJ-L14B) in combination with PD-1 inhibitors will likely further enhance therapeutic benefit in clinical trials.

6.
Micromachines (Basel) ; 14(12)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38138340

RESUMO

This paper proposes an acoustic bubble and magnetic actuation-based microrobot for enhancing multiphase drug delivery efficiency. The proposed device can encapsulate multiphase drugs, including liquids, using the two bubbles embedded within the microtube. Additionally, using the magnetic actuation of the loaded magnetic liquid metal, it can deliver drugs to target cells. This study visualized the flow patterns generated by the oscillating bubble within the tube to validate the drug release principle. In addition, to investigate the effect of the oscillation properties of the inner bubble on drug release, the oscillation amplitude of the inner bubble was measured under various experimental variables using a high-speed camera. Subsequently, we designed a microrobot capable of encapsulating bubbles, drugs, and magnetic liquid metal and fabricated it using microfabrication technology based on ultra-precision 3D printing. As a proof of concept, we demonstrated the transport and drug release of the microrobot encapsulating the drug in a Y-shaped channel simulating a blood vessel. The proposed device is anticipated to enhance the efficiency of drug therapy by minimizing drug side effects, reducing drug administration frequency, and improving the stability of the drug within the body. This paper is expected to be applicable not only to targeted drug delivery but also to various biomedical fields, such as minimally invasive surgery and cell manipulation, by effectively delivering multiphase drugs using the simple structure of a microrobot.

7.
ACS Appl Mater Interfaces ; 15(50): 58377-58387, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38079643

RESUMO

Alkaline water electrolysis is a vital technology for sustainable and efficient hydrogen production. However, the oxygen evolution reaction (OER) at the anode suffers from sluggish kinetics, requiring overpotential. Precious metal-based electrocatalysts are commonly used but face limitations in cost and availability. Carbon nanostructures, such as carbon nanotubes (CNTs), offer promising alternatives due to their abundant active sites and efficient charge-transfer properties. Surface modification of CNTs through techniques such as pulsed laser ablation in liquid media (PLAL) can enhance their catalytic performance. In this study, we investigate the role of surface-modified carbon (SMC) as a support to increase the active sites of transition metal-based electrocatalysts and its impact on electrocatalytic performance for the OER. We focus on Co3O4@SMC heterostructures, where an ultrathin layer of Co3O4 is deposited onto SMCs using a combination of PLAL and atomic layer deposition. A comparative analysis with aggregated Co3O4 and Co3O4@pristine CNTs reveals the superior OER performance of Co3O4@SMC. The optimized Co3O4@SMC exhibits a 25.6% reduction in overpotential, a lower Tafel slope, and a significantly higher turnover frequency (TOF) in alkaline water splitting. The experimental results, combined with density functional theory (DFT) calculations, indicate that these improvements can be attributed to the high electrocatalytic activity of Co3O4 as active sites achieved through the homogeneous distribution on SMCs. The experimental methodology, morphology, composition, and their correlation with activity and stability of Co3O4@SMC for the OER in alkaline media are discussed in detail. This study contributes to the understanding of SMC-based heterostructures and their potential for enhancing electrocatalytic performance in alkaline water electrolysis.

8.
Mater Horiz ; 9(6): 1631-1640, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35474536

RESUMO

Applications that provide versatile, high temperature warnings require the development of thermochromic materials based on solid-state oxides. To boost the visible thermochromic properties, a fundamental approach to reveal the unclear roles of local structure on band structure modulation should be considered by scrutinizing the thermal motion of phonon modes. Herein, we demonstrate that selective coupling of intra-layer phonon modes intensifies the visible thermochromism of layered oxides α-MoO3. As a result of thermally induced band gap reduction in α-MoO3, the observed color reversibly changes from white at 25 °C to yellow at 300 °C owing to a red shift of the absorption edge with an increase of temperature. This high-temperature thermochromism is attributed to the anisotropic change of layered α-MoO3 crystal structures characterized by synchrotron X-ray diffraction. Notably, quantitative characterizations combined with theoretical calculations reveal that the cooperative coupling of active Raman modes in intra-layer [MoO6] octahedra are responsible for the band gap reduction at high temperature; this defies the general belief regarding the origin of visible thermochromism in layered oxides as the modulation of a van der Waals inter-layer distance. These original results can aid the development of a new strategy to further intensify high-temperature thermochromism by anion doping for highly sensitive temperature-indicating applications.

9.
ACS Omega ; 7(18): 15615-15624, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35571819

RESUMO

Encapsulating platinum nanoparticles with a carbon shell can increase the stability of core platinum nanoparticles by preventing their dissolution and agglomeration. In this study, the synthesis mechanism of a platinum core-carbon shell catalyst via thermal reduction of a platinum-aniline complex was investigated to determine how the carbon shell forms and identify the key factor determining the properties of the Pt core-carbon shell catalyst. Three catalysts originating from the complexes with different platinum to carbon precursor ratios were synthesized through pyrolysis. Their structural characteristics were examined using various analysis techniques, and their electrochemical activity and stability were evaluated through half-cell and unit-cell tests. The relationship between the nitrogen to platinum ratio and structural characteristics was revealed, and the effects on the electrochemical activity and stability were discussed. The ratio of the carbon precursor to platinum was the decisive factor determining the properties of the platinum core-carbon shell catalyst.

10.
ACS Omega ; 7(15): 12956-12970, 2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35474770

RESUMO

We prepared Nafion composite membranes by impregnating Nafion-212 with polydopamine, poly(sulfonated dopamine), and poly(dopamine-co-sulfonated dopamine) using the swelling-filling method to generate nanopores in the Nafion framework that were filled with these polymers. Compared to the pristine Nafion-212 membrane, these composite membranes showed improved thermal and mechanical stabilities due to the strong interactions between the catecholamine of the polydopamine derivatives and the Nafion matrix. For the composite membrane filled with poly(sulfonated dopamine) (N-PSDA), further interactions were induced between the Nafion and the sulfonic acid side chain, resulting in enhanced water uptake and ion conductivity. In addition, filling the nanopores in the Nafion matrix with polymer fillers containing aromatic hydrocarbon-based dopamine units led to an increase in the degree of crystallinity and resulted in a significant decrease in the hydrogen permeability of the composite membranes compared to Nafion-212. Hydrogen crossovers 26.8% lower than Nafion-212 at 95% relative humidity (RH) (fuel cell operating conditions) and 27.3% lower at 100% RH (water electrolysis operating conditions) were obtained. When applied to proton exchange membrane-based fuel cells, N-PSDA exhibited a peak power density of 966 mW cm-2, whereas N-PSDA showed a current density of 4785 mA cm-2, which is 12.4% higher than Nafion-212 at 2.0 V and 80 °C.

11.
ACS Appl Mater Interfaces ; 13(24): 28188-28200, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34125524

RESUMO

We report semi-interpenetrating polymer network (semi-IPN) membranes prepared easily from a cross-linked network using poly(acrylic acid) (PAA) and poly(vinyl alcohol) (PVA) with interpenetrated Nafion for both proton-exchange membrane fuel cell (PEMFC) and proton-exchange membrane water electrolyzer (PEMWE) applications. Thermal esterification between PAA and PVA induced three-dimensional cross-linking to improve mechanical toughness and reduce hydrogen crossover, while the hydrophilic nature of the PAA-PVA-based cross-linked matrix still enhanced the water uptake (WU) and hence conductivity of the Nafion penetrant. The semi-IPN membrane (NPP-95) composed of Nafion, PAA, and PVA with a ratio of 95:2.5:2.5 showed a hexagonal cylindrical morphology and improved thermal, mechanical, and dimensional stability compared to a recast Nafion membrane (re-Nafion). The membrane was also highly effective at managing water due to its low WU and high conductivity. Furthermore, its hydrogen permeability was 49.6% lower than that of re-Nafion under the actual fuel cell operating conditions (at 100% RH and 80 °C). NPP-95 exhibited significantly improved conductivity and PEMFC performance compared to re-Nafion with a current density of 1561 mA/cm2 at a potential of 0.6 V and a peak power density of 1179 mW/cm2. Furthermore, in the PEMWE performances, NPP-95 displayed about a 1.5-fold higher current density of 4310 mA/cm2 at 2.0 V and much lower ohmic resistance than re-Nafion between 60 and 80 °C.

12.
J Immunother Cancer ; 9(7)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34230109

RESUMO

BACKGROUND: Stimulation of 4-1BB with agonistic antibodies is a promising strategy for improving the therapeutic efficacy of immune checkpoint inhibitors (ICIs) or for overcoming resistance to ICIs. However, dose-dependent hepatotoxicity was observed in clinical trials with monoclonal anti-4-1BB agonistic antibodies due to the activation of 4-1BB signaling in liver resident Kupffer cells. METHODS: To avoid this on-target liver toxicity, we developed a novel bispecific antibody (4-1BB×PD-L1 bispecific antibody, termed "ABL503") uniquely designed to activate 4-1BB signaling only in the context of PD-L1, while also blocking PD-1/PD-L1 signaling. RESULTS: Functional evaluation using effector cells expressing both 4-1BB and PD-1 revealed superior biological activity of ABL503 compared with the combination of each monoclonal antibody. ABL503 also augmented T-cell activation in in vitro assays and further enhanced the anti-PD-L1-mediated reinvigoration of tumor-infiltrating CD8+ T cells from patients with cancer. Furthermore, in humanized PD-L1/4-1BB transgenic mice challenged with huPD-L1-expressing tumor cells, ABL503 induced superior anti-tumor activity and maintained an anti-tumor response against tumor rechallenge. ABL503 was well tolerated, with normal liver function in monkeys. CONCLUSION: The novel anti-4-1BB×PD-L1 bispecific antibody may exert a strong anti-tumor therapeutic efficacy with a low risk of liver toxicity through the restriction of 4-1BB stimulation in tumors.


Assuntos
Anticorpos Biespecíficos/uso terapêutico , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia/métodos , Neoplasias/tratamento farmacológico , Animais , Anticorpos Biespecíficos/farmacologia , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Masculino , Camundongos
13.
ACS Appl Mater Interfaces ; 12(40): 44588-44596, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32924426

RESUMO

Methanol crossover is one of the largest problems in direct methanol fuel cells (DMFCs). Methanol passing from the anode to the cathode through the membrane is oxidized at the cathode, degrading the DMFC performance, and the intermediates of the methanol oxidation reaction (MOR) cause cathode catalyst poisoning. Therefore, it is essential to develop a cathode catalyst capable of inhibiting MOR while promoting the oxygen reduction reaction (ORR), which is a typical cathode reaction in DMFCs. In this study, a carbon-encapsulated Pt cathode catalyst was synthesized for this purpose. The catalyst was simply synthesized by heat treatment of Pt-aniline complex-coated carbon nanofibers. The carbon shell of the catalyst was effective in inhibiting methanol from accessing the Pt core, and this effect became more prominent as the graphitization degree of the carbon shell increased. Meanwhile, the carbon shell allowed O2 to permeate regardless of the graphitization degree, enabling the Pt core to participate in ORR. The synthesized catalyst showed higher performance and stability in single-cell tests under various conditions compared to commercial Pt/C.

14.
J Chem Phys ; 131(4): 044705, 2009 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-19655907

RESUMO

The effect of hydroxide ions on proton transfer and H/D isotopic exchange of water molecules was examined at the surface of amorphous ice films at temperatures of 92-140 K. Excess hydroxide ions were provided onto a D(2)O-ice film by the hydrolysis of Na atoms, and H(2)O was adsorbed onto the surface for a submonolayer coverage. The H/D isotopic exchange between H(2)O and D(2)O molecules on the ice film surface was monitored as a function of reaction time and temperature by using the techniques of reactive ion scattering and low-energy sputtering. The result was compared with that obtained on a hydroxide-free ice film. At a temperature of 92 K, proton transfer occurred from water mostly to adjacent hydroxide ions. The proton transfer distance and the H/D exchange reaction rate increased with increase in temperature above 105 K. The H/D exchange reaction propagated to several water molecules on the surface at 100-120 K. Kinetic measurement in this temperature range deduced the Arrhenius activation energy for the reaction, E(a) = 9.6+/-2.0 kJ mol(-1). The study shows that hydroxide ions promote the H/D exchange reaction on the ice surface compared with that on a hydroxide-free ice surface, but the promotion effect is moderate and the H/D exchange occurs on a substantial energy barrier. It is suggested that the stabilization of hydroxide ions at the ice surface produces an energy barrier for the proton transfer.


Assuntos
Medição da Troca de Deutério , Hidróxidos/química , Gelo , Prótons , Água/química , Propriedades de Superfície
15.
Artigo em Inglês | MEDLINE | ID: mdl-30805196

RESUMO

BACKGROUND: We aim to discuss the overall effect of customer service manual (CSM) on service industry workers using Korean Working Condition Survey. METHODS: Out of 50,007 total survey participants, 11,946 customer service workers were included in the current study (5613 men, 6333 women). Answers to survey questions were used to define the use of CSM, emotional burden, emotional dissonance, engaging angry customers and other covariates. Emotional burden included either depressive event or stress level. Odds ratio (OR) with 95% confidence interval (95% CI) of experiencing emotional burden was calculated by logistic regression model. Interaction effect between CSM and engaging angry customer on emotional burden was also estimated. RESULTS: Out of 11,946 subjects, total of 3279 (27.4%) have experienced emotional burden. OR (95% CI) of experiencing emotional burden was 1.40 (1.19-1.64) in men and 1.25 (1.09-1.44) in women. There was gender difference in interaction effect between the use of CSM and engaging angry customers. In men, OR (95% CI) was 3.16 (1.38-7.23) with additive effect when always engaging angry customers with CSM compared to rarely engaging without CSM, while in women OR (95% CI) was 8.85 (3.96-19.75) with synergistic effect. Moreover, the risk of depressive event increased only in women with OR (95% CI) 2.22 (1.42-3.48). CONCLUSIONS: Our current study highlighted association between emotional burden and CSM in both men and women service workers. Furthermore, women were affected more severely by CSM. The results from current study suggest that CSM should be changed appropriately to benefit workers.

16.
Korean J Fam Med ; 38(6): 352-357, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29209475

RESUMO

BACKGROUND: Metabolic syndrome is associated with cardiovascular diseases and is characterized by insulin resistance. Recent studies suggest that the triglyceride/high-density lipoprotein cholesterol (TG/HDLC) ratio predicts insulin resistance better than individual lipid levels, including TG, total cholesterol, low-density lipoprotein cholesterol (LDLC), or HDLC. We aimed to elucidate the relationship between the TG/HDLC ratio and metabolic syndrome in the general Korean population. METHODS: We evaluated the data of adults ≥20 years old who were enrolled in the Korean National Health and Nutrition Examination Survey in 2013 and 2014. Subjects with angina pectoris, myocardial infarction, stroke, or cancer were excluded. Metabolic syndrome was defined by the harmonized definition. We examined the odds ratios (ORs) of metabolic syndrome according to TG/HDLC ratio quartiles using logistic regression analysis (SAS ver. 9.4; SAS Institute Inc., Cary, NC, USA). Weighted complex sample analysis was also conducted. RESULTS: We found a significant association between the TG/HDLC ratio and metabolic syndrome. The cutoff value of the TG/HDLC ratio for the fourth quartile was ≥3.52. After adjustment, the OR for metabolic syndrome in the fourth quartile compared with that of the first quartile was 29.65 in men and 20.60 in women (P<0.001). CONCLUSION: The TG/HDLC ratio is significantly associated with metabolic syndrome.

17.
J Periodontal Implant Sci ; 45(3): 120-6, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26131372

RESUMO

PURPOSE: With the significance of stable adhesion of alveolar bone and peri-implant soft tissue on the surface of titanium for successful dental implantation procedure, the purpose of this study was to apply microgrooves on the titanium surface and investigate their effects on peri-implant cells and tissues. METHODS: Three types of commercially pure titanium discs were prepared; machined-surface discs (A), sandblasted, large-grit, acid-etched (SLA)-treated discs (B), SLA and microgroove-formed discs (C). After surface topography of the discs was examined by confocal laser scanning electron microscopy, water contact angle and surface energy were measured. Human gingival fibroblasts (hGFs) and murine osteoblastic cells (MC3T3-E1) were seeded onto the titanium discs for immunofluorescence assay of adhesion proteins. Commercially pure titanium implants with microgrooves on the coronal microthreads design were inserted into the edentulous mandible of beagle dogs. After 2 weeks and 6 weeks of implant insertion, the animal subjects were euthanized to confirm peri-implant tissue healing pattern in histologic specimens. RESULTS: Group C presented the lowest water contact angle (62.89±5.66 θ), highest surface energy (45±1.2 mN/m), and highest surface roughness (Ra=22.351±2.766 µm). The expression of adhesion molecules of hGFs and MC3T30E1 cells was prominent in group C. Titanium implants with microgrooves on the coronal portion showed firm adhesion to peri-implant soft tissue. CONCLUSIONS: Microgrooves on the titanium surface promoted the adhesion of gingival fibroblasts and osteoblastic cells, as well as favorable peri-implant soft tissue sealing.

18.
J Chem Phys ; 127(8): 084701, 2007 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-17764278

RESUMO

We have examined the elementary molecular processes responsible for proton transfer and HD exchange in thin ice films for the temperature range of 100-140 K. The ice films are made to have a structure of a bottom D(2)O layer and an upper H(2)O layer, with excess protons generated from HCl ionization trapped at the D(2)OH(2)O interface. The transport behavior of excess protons from the interfacial layer to the ice film surface and the progress of the HD exchange reaction in water molecules are examined with the techniques of low energy sputtering and Cs(+) reactive ion scattering. Three major processes are identified: the proton hopping relay, the hop-and-turn process, and molecular diffusion. The proton hopping relay can occur even at low temperatures (<120 K), and it transports a specific portion of embedded protons to the surface. The hop-and-turn mechanism, which involves the coupling of proton hopping and molecule reorientation, increases the proton transfer rate and causes the HD exchange of water molecules. The hop-and-turn mechanism is activated at temperatures above 125 K in the surface region. Diffusional mixing of H(2)O and D(2)O molecules additionally contributes to the HD exchange reaction at temperatures above 130 K. The hop-and-turn and molecular diffusion processes are activated at higher temperatures in the deeper region of ice films. The relative speeds of these processes are in the following order: hopping relay>hop and turn>molecule diffusion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA