Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
RSC Adv ; 11(46): 28940-28948, 2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35478539

RESUMO

In the event of nuclear waste canister failure in a deep geological repository, groundwater interaction with spent fuel will lead to dissolution of uranium (U) into the environment. The rate of U dissolution is affected by bicarbonate (HCO3 -) concentrations in the groundwater, as well as H2O2 produced by water radiolysis. To understand the dissolution of U3O8 by H2O2 in bicarbonate solution (0.1-50 mM), dissolved U concentrations were measured upon H2O2 addition (300 µM) to U3O8/bicarbonate mixtures. As the H2O2 decomposition mechanism is integral to the dissolution of U3O8, the kinetics and mechanism of H2O2 decomposition at the U3O8 surface was investigated. The dissolution of U3O8 increased with bicarbonate concentration which was attributed to a change in the H2O2 decomposition mechanism from catalytic at low bicarbonate (≤5 mM HCO3 -) to oxidative at high bicarbonate (≥10 mM HCO3 -). Catalytic decomposition of H2O2 at low bicarbonate was attributed to the formation of an oxidised surface layer. Second-order rate constants for the catalytic and oxidative decomposition of H2O2 at the U3O8 surface were 4.24 × 10-8 m s-1 and 7.66 × 10-9 m s-1 respectively. A pathway to explain both the observed U3O8 dissolution behaviour and H2O2 decomposition as a function of bicarbonate concentration was proposed.

2.
Dalton Trans ; 48(20): 6942-6950, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31038512

RESUMO

The ternary complexation of calcium uranyl tricarbonate species, CaUO2(CO3)32- and Ca2UO2(CO3)3(aq), which are the predominant U(vi) complexes in groundwater and seawater, was investigated at variable temperatures from 10 to 70 °C. Time-resolved laser fluorescence spectroscopy (TRLFS), calcium ion-selective electrode potentiometry, and ultraviolet/visible (UV/Vis) absorption spectroscopy were complementarily employed to determine the formation constants (log Kx13, x = 1 and 2 for mono- and dicalcium complexes, respectively). at infinite dilution (zero ionic strength) was determined by correction using specific ion interaction theory (SIT), and an increasing tendency of with temperature was observed. In addition, the molar enthalpy of complexation (ΔrHm) was measured by calorimetry at 25 °C. Based on thermodynamic data obtained in this work, the approximation models were examined for the prediction of the temperature effect on the complexation, and the constant enthalpy approximation with the chemical complexation reaction modified to an isoelectric reaction showed a satisfactory prediction of in the temperature range of 10-70 °C. Finally, the results of U(vi) speciation in groundwater indicated that the dominance of calcium uranyl tricarbonate complexes would be weakened at elevated temperatures by the strongly enhanced hydrolysis of U(vi).

3.
Chemosphere ; 168: 798-806, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27865443

RESUMO

To better understand the migration behavior of minor actinides in deep groundwater, the interactions between doped rare earth elements (REEs) and components of Horonobe deep groundwater were investigated. Approximately 10 ppb of the REEs, i.e. Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Er, Tm, and Yb were doped into a groundwater sample collected from a packed section in a borehole drilled at 140 m depth in the experiment drift of Horonobe Underground Research Laboratory in Hokkaido, Japan. The groundwater sample was sequentially filtered with a 0.2 µm pore filter, and 10 kDa, 3 kDa and 1 kDa nominal molecular weight limit (NMWL) ultrafilters with conditions kept inert. Next, the filtrate solutions were analyzed with inductively coupled plasma mass spectrometry (ICP-MS) to determine the concentrations of the REEs retained in solution at each filtration step, while the used filters were analyzed through neutron activation analysis (NAA) and TOF-SIMS element mapping to determine the amounts and chemical species of the trapped fractions of REEs on each filter. A strong relationship between the ratios of REEs retained in the filtrate solutions and the ionic radii of the associated REEs was observed; i.e. smaller REEs occur in larger proportions dissolved in the solution phase under the conditions of the Horonobe groundwater. The NAA and TOF-SIMS analyses revealed that portions of the REEs were trapped by the 0.2 µm pore filter as REE phosphates, which correspond to the species predicted to be predominant by chemical equilibrium calculations for the conditions of the Horonobe groundwater. Additionally, small portions of colloidal REEs were trapped by the 10 kDa and 3 kDa NMWL ultrafilters. These results suggest that phosphate anions play an important role in the chemical behavior of REEs in saline (seawater-based) groundwater, which may be useful for predicting the migration behavior of trivalent actinides released from radioactive waste repositories in the far future.


Assuntos
Água Subterrânea/química , Espectrometria de Massas/métodos , Metais Terras Raras/análise , Poluentes Químicos da Água/análise , Filtração , Japão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA