Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1828(2): 623-31, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23022132

RESUMO

Cation-Cl(-) cotransporters (CCCs) are integral membrane proteins which catalyze the coordinated symport of Cl(-) with Na(+) and/or K(+) ions in plant and mammalian cells. Here we describe the first Saccharomyces cerevisiae CCC protein, encoded by the YBR235w open reading frame. Subcellular localization studies showed that this yeast CCC is targeted to the vacuolar membrane. Deletion of the YBR235w gene in a salt-sensitive strain (lacking the plasma-membrane cation exporters) resulted in an increased sensitivity to high KCl, altered vacuolar morphology control and decreased survival upon hyperosmotic shock. In addition, deletion of the YBR235w gene in a mutant strain deficient in K(+) uptake produced a significant growth advantage over the parental strain under K(+)-limiting conditions, and a hypersensitivity to the exogenous K(+)/H(+) exchanger nigericin. These results strongly suggest that we have identified a novel yeast vacuolar ion transporter mediating a K(+)-Cl(-) cotransport and playing a role in vacuolar osmoregulation. Considering its identified function, we propose to refer to the yeast YBR235w gene as VHC1 (vacuolar protein homologous to CCC family 1).


Assuntos
Cátions/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Simportadores/química , Vacúolos/química , Cloretos/química , DNA/química , Eletroquímica/métodos , Genótipo , Concentração de Íons de Hidrogênio , Transporte de Íons , Potenciais da Membrana , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Nigericina/farmacologia , Oligonucleotídeos/química , Fases de Leitura Aberta , Pressão Osmótica , Filogenia , Recombinação Genética , Proteínas de Saccharomyces cerevisiae/fisiologia , Sorbitol/química , Simportadores/fisiologia
2.
Curr Genet ; 58(5-6): 255-64, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22948499

RESUMO

Three different transport systems exist to accumulate a sufficient amount of potassium cations in yeasts. The most common of these are Trk-type transporters, which are used by all yeast species. Though most yeast species employ two different types of transporters, we only identified one gene encoding a potassium uptake system (Trk-type) in the genome of the highly osmotolerant yeast Zygosaccharomyces rouxii, and our results showed that ZrTrk1 is its major (and probably only) specific potassium uptake system. When expressed in Saccharomyces cerevisiae, the product of the ZrTRK1 gene is localized to the plasma membrane and its presence efficiently complements the phenotypes of S. cerevisiae trk1∆ trk2∆ cells. Deletion of the ZrTRK1 gene resulted in Z. rouxii cells being almost incapable of growth at low K(+) concentrations and it changed some cell physiological parameters in a way that differs from S. cerevisiae. In contrast to S. cerevisiae, Z. rouxii cells without the TRK1 gene contained less potassium than the control cells and their plasma membrane was significantly hyperpolarized compared with those of the parental strain when grown in the presence of 100 mM KCl. On the other hand, subsequent potassium starvation led to a substantial depolarization which is again different from S. cerevisiae. Plasma-membrane hyperpolarization did not prevent the efflux of potassium from Z. rouxii trk1Δ cells during potassium starvation, and the activity of ZrPma1 is less affected by the absence of ZrTRK1 than in S. cerevisiae. The use of a newly constructed Z. rouxii-specific plasmid for the expression of pHluorin showed that the intracellular pH of the Z. rouxii wild type and the trk1∆ mutant is not significantly different. Together with the fact that Z. rouxii cells contain a significantly lower amount of intracellular potassium than identically grown S. cerevisiae cells, our results suggest that this highly osmotolerant yeast species maintain its intracellular pH and potassium homeostasis in way(s) partially distinct from S. cerevisiae.


Assuntos
Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Potássio/metabolismo , Saccharomyces cerevisiae/fisiologia , Zygosaccharomyces/fisiologia , Adaptação Biológica , Sequência de Aminoácidos , Transporte Biológico , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Membrana Celular/fisiologia , DNA Fúngico/genética , DNA Fúngico/metabolismo , Deleção de Genes , Homeostase , Recombinação Homóloga , Concentração de Íons de Hidrogênio , Potenciais da Membrana , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Homologia de Sequência , Zygosaccharomyces/genética
3.
J Mol Biol ; 427(8): 1681-94, 2015 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-25701798

RESUMO

Na(+)/H(+) antiporters may recognize all alkali-metal cations as substrates but may transport them selectively. Plasma-membrane Zygosaccharomyces rouxii Sod2-22 antiporter exports Na(+) and Li(+), but not K(+). The molecular basis of this selectivity is unknown. We combined protein structure modeling, site-directed mutagenesis, phenotype analysis and cation efflux measurements to localize and characterize the cation selectivity region. A three-dimensional model of the ZrSod2-22 transmembrane domain was generated based on the X-ray structure of the Escherichia coli NhaA antiporter and primary sequence alignments with homologous yeast antiporters. The model suggested a close proximity of Thr141, Ala179 and Val375 from transmembrane segments 4, 5 and 11, respectively, forming a hydrophobic hole in the putative cation pathway's core. A series of mutagenesis experiments verified the model and showed that structural modifications of the hole resulted in altered cation selectivity and transport activity. The triple ZrSod2-22 mutant T141S-A179T-V375I gained K(+) transport capacity. The point mutation A179T restricted the antiporter substrate specificity to Li(+) and reduced its transport activity, while serine at this position preserved the native cation selectivity. The negative effect of the A179T mutation can be eliminated by introducing a second mutation, T141S or T141A, in the preceding transmembrane domain. Our experimental results confirm that the three residues found through modeling play a central role in the determination of cation selectivity and transport activity in Z. rouxii Na(+)/H(+) antiporter and that the cation selectivity can be modulated by repositioning a single local methyl group.


Assuntos
Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Trocadores de Sódio-Hidrogênio/química , Trocadores de Sódio-Hidrogênio/metabolismo , Zygosaccharomyces/química , Zygosaccharomyces/metabolismo , Sequência de Aminoácidos , Cátions/metabolismo , Proteínas Fúngicas/genética , Interações Hidrofóbicas e Hidrofílicas , Lítio/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutação Puntual , Potássio/metabolismo , Conformação Proteica , Sódio/metabolismo , Trocadores de Sódio-Hidrogênio/genética , Especificidade por Substrato , Zygosaccharomyces/genética
4.
Microbiology (Reading) ; 153(Pt 8): 2603-2612, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17660424

RESUMO

The physiological role of Candida albicans Cnh1, a member of the Na+/H+ antiporter family, was characterized. Though CaCnh1p had broad substrate specificity and mediated efflux of at least four alkali metal cations upon heterologous expression in Saccharomyces cerevisiae, its presence in C. albicans cells was important especially for potassium homeostasis. In C. albicans, CaCnh1p tagged with GFP was localized in the plasma membrane of cells growing as both yeasts and hyphae. Deletion of CNH1 alleles did not affect tolerance to NaCl, LiCl or CsCl, but resulted in increased sensitivity to high external concentrations of KCl and RbCl. The potassium and rubidium tolerance of a cnh1 homozygous mutant was fully restored by reintegration of CNH1 into the genome. The higher sensitivity of the cnh1/cnh1 mutant to external KCl was caused by a lower K+ efflux from these cells. Together, the functional characterization of the CaCnh1 antiporter in C. albicans revealed that this antiporter plays a significant role in C. albicans physiology. It ensures potassium and rubidium tolerance and participates in the regulation of intracellular potassium content of C. albicans cells.


Assuntos
Candida albicans/metabolismo , Proteínas Fúngicas/metabolismo , Potássio/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Antibacterianos/farmacologia , Membrana Celular/química , Césio/farmacologia , Cloretos/farmacologia , Clonagem Molecular , Farmacorresistência Fúngica , Proteínas Fúngicas/análise , Proteínas Fúngicas/genética , Deleção de Genes , Expressão Gênica , Teste de Complementação Genética , Homeostase , Hifas/química , Cloreto de Lítio/farmacologia , Cloreto de Potássio/farmacologia , Rubídio/farmacologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Cloreto de Sódio/farmacologia , Trocadores de Sódio-Hidrogênio/análise , Trocadores de Sódio-Hidrogênio/genética , Especificidade por Substrato , Leveduras/química
5.
Curr Genet ; 49(4): 229-36, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16402204

RESUMO

Saccharomyces cerevisiae uses different mechanisms to adapt to changes in environmental osmolarity. Upon hyperosmotic shock, cells first mobilize a rapid rescue system that prevents excessive loss of ions and water; then in the adaptation period they accumulate a compatible solute (glycerol). When subjected to hypoosmotic shock, they rapidly release intracellular stocks of glycerol to reduce intracellular osmolarity and prevent bursting. The plasma membrane Nha1 alkali metal cation/H+ antiporter is not important in helping the cells to survive a sudden drop in external osmolarity, but is involved in the cell response to hyperosmotic shock. For this role, its long hydrophilic C-terminus is indispensable. The capacity of the Nha1 antiporter to transport potassium is regulated by Hog1 kinase. Upon sorbitol-mediated stress, the Nha1p potassium export activity decreases in order to maintain a higher intracellular concentration of solutes. The C-terminal-less Nha1 version is not inactivated and its potassium efflux activity renders cells very sensitive to hyperosmotic shock. Taken together, our results suggest an important role of Nha1p and its C-terminus in the immediate response to hyperosmotic shock as part of the rapid rescue mechanism.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Regulação Fúngica da Expressão Gênica/fisiologia , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Regulação para Cima/fisiologia , Adaptação Fisiológica/fisiologia , Proteínas de Transporte de Cátions/genética , Transporte de Íons/fisiologia , Proteínas de Membrana/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Pressão Osmótica , Estrutura Terciária de Proteína/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Trocadores de Sódio-Hidrogênio/genética
6.
FEMS Yeast Res ; 6(5): 792-800, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16879429

RESUMO

There are three different sodium transport systems (Ena1-4p, Nha1p, Nhx1p) in Saccharomyces cerevisiae. The effect of their absence on the tolerance to alkali-metal cations and on the membrane potential was studied. All three sodium transporters were found to participate in the maintenance of Na+, Li+, K+ and Cs+ homeostasis. Measurements of the distribution of a fluorescent potentiometric probe (diS-C3(3) assay) in cell suspensions showed that the lack of all three transporters depolarizes the plasma membrane. The overexpression of the Na+,K+/H+ antiporter Nha1 resulted in the hyperpolarization of the plasma membrane and consequently increased the sensitivity to Cs+, Tl+ and hygromycin B. This is the first evidence that the activity of a Na+,K+/H+ antiporter could play a role in the homeostatic regulation of the plasma membrane potential in yeast cells.


Assuntos
Proteínas de Transporte de Cátions/fisiologia , Proteínas de Membrana/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/fisiologia , Trocadores de Sódio-Hidrogênio/fisiologia , Concentração de Íons de Hidrogênio , Potenciais da Membrana , Potássio/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Sódio/metabolismo
7.
Mol Membr Biol ; 23(4): 349-61, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16923728

RESUMO

The Zygosaccharomyces rouxii Na+/H+ antiporter Sod2-22p is a member of the subfamily of yeast plasma membrane Nha/Sod antiporters that do not recognize potassium as their substrate. A functional study of two ZrSod2-22p mutated versions that improved the tolerance of a S. cerevisiae alkali-metal-cation sensitive strain to high extracellular concentration of KCl identified two polar non-charged amino-acid residues in the fifth transmembrane domain, Thr141 and Ser150, as being involved in substrate recognition and transport in yeast Nha/Sod antiporters. A reciprocal substitution of amino-acid residues with a hydroxyl group at these positions, T141S or S150T, produced a broadened cation selectivity of the antiporter for K+, in addition to Na+ and Li+. Site-directed mutagenesis of Ser150 showed that while the replacement of Ser150 with a small hydrophobic (valine) or negatively charged (aspartate) amino acid did not produce a significant change in ZrSod2-22p substrate specificity, the introduction of a positive charge at this position stopped the activity of the antiporter. This data demonstrates that the amino-acid composition of the fifth transmembrane domain, mainly the presence of amino acids containing hydroxyl groups in this part of the protein, is critical for the recognition and transport of substrates and could participate in conformational movements during the binding and/or cation transport cycle in yeast plasma membrane Na+/H+ antiporters.


Assuntos
Membrana Celular/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Saccharomyces cerevisiae/metabolismo , Serina/química , Trocadores de Sódio-Hidrogênio/química , Trocadores de Sódio-Hidrogênio/metabolismo , Treonina/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Proteínas Fúngicas/genética , Transporte de Íons , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Reação em Cadeia da Polimerase , Conformação Proteica , Estrutura Terciária de Proteína , Serina/genética , Sódio/metabolismo , Trocadores de Sódio-Hidrogênio/genética , Especificidade por Substrato/genética , Treonina/genética
8.
J Biol Chem ; 280(34): 30638-47, 2005 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-15994323

RESUMO

Yeast plasma membrane Na+/H+ antiporters are divided according to their substrate specificity in two distinct subfamilies. To identify amino acid residues responsible for substrate specificity determination (recognition of K+), the Zygosaccharomyces rouxii Sod2-22 antiporter (non-transporting K+) was mutagenized and a collection of ZrSod2-22 mutants that improved the KCl tolerance of a salt-sensitive Saccharomyces cerevisiae strain was isolated. Several independent ZrSod2-22 mutated alleles contained the replacement of a highly conserved proline 145 with a residue containing a hydroxyl group (Ser, Thr). Site-directed mutagenesis of Pro145 proved that an amino acid with a hydroxyl group at this position is enough to enable ZrSod2-22p to transport K+. Simultaneously, the P145(S/T) mutation decreased the antiporter transport activity for both Na+ and Li+. Replacement of Pro145 with glycine resulted in a ZrSod2-22p with extremely low activity only for Na+, and the exchange of a charged residue (Asp, Lys) for Pro145 completely stopped the activity. Mutagenesis of the corresponding proline in the S. cerevisiae Nha1 antiporter (Pro146) confirmed that this proline of the fifth transmembrane domain is a critical residue for antiporter function. This is the first evidence that a non-polar amino acid residue is important for the substrate specificity and activity of yeast Nha antiporters.


Assuntos
Proteínas de Transporte/genética , Proteínas de Transporte/fisiologia , Membrana Celular/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/fisiologia , Prolina/química , Saccharomyces cerevisiae/metabolismo , Zygosaccharomyces/metabolismo , Alelos , Sequência de Aminoácidos , Transporte Biológico , Cátions , Relação Dose-Resposta a Droga , Glicina/química , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Plasmídeos/metabolismo , Reação em Cadeia da Polimerase , Potássio/química , Potássio/metabolismo , Conformação Proteica , Saccharomyces cerevisiae/genética , Sais/farmacologia , Trocadores de Sódio-Hidrogênio , Especificidade da Espécie , Especificidade por Substrato , Fatores de Tempo , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA