Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Physiol ; 596(5): 827-855, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29313986

RESUMO

KEY POINTS: Abnormal mitochondrial morphology and function in cardiomyocytes are frequently observed under persistent Gq protein-coupled receptor (Gq PCR) stimulation. Cardiac signalling mechanisms for regulating mitochondrial morphology and function under pathophysiological conditions in the heart are still poorly understood. We demonstrate that a downstream kinase of Gq PCR, protein kinase D (PKD) induces mitochondrial fragmentation via phosphorylation of dynamin-like protein 1 (DLP1), a mitochondrial fission protein. The fragmented mitochondria enhance reactive oxygen species generation and permeability transition pore opening in mitochondria, which initiate apoptotic signalling activation. This study identifies a novel PKD-specific substrate in cardiac mitochondria and uncovers the role of PKD on cardiac mitochondria, with special emphasis on the molecular mechanism(s) underlying mitochondrial injury with abnormal mitochondrial morphology under persistent Gq PCR stimulation. These findings provide new insights into the molecular basis of cardiac mitochondrial physiology and pathophysiology, linking Gq PCR signalling with the regulation of mitochondrial morphology and function. ABSTRACT: Regulation of mitochondrial morphology is crucial for the maintenance of physiological functions in many cell types including cardiomyocytes. Small and fragmented mitochondria are frequently observed in pathological conditions, but it is still unclear which cardiac signalling pathway is responsible for regulating the abnormal mitochondrial morphology in cardiomyocytes. Here we demonstrate that a downstream kinase of Gq protein-coupled receptor (Gq PCR) signalling, protein kinase D (PKD), mediates pathophysiological modifications in mitochondrial morphology and function, which consequently contribute to the activation of apoptotic signalling. We show that Gq PCR stimulation induced by α1 -adrenergic stimulation mediates mitochondrial fragmentation in a fission- and PKD-dependent manner in H9c2 cardiac myoblasts and rat neonatal cardiomyocytes. Upon Gq PCR stimulation, PKD translocates from the cytoplasm to the outer mitochondrial membrane (OMM) and phosphorylates a mitochondrial fission protein, dynamin-like protein 1 (DLP1), at S637. PKD-dependent phosphorylation of DLP1 initiates DLP1 association with the OMM, which then enhances mitochondrial fragmentation, mitochondrial superoxide generation, mitochondrial permeability transition pore opening and apoptotic signalling. Finally, we demonstrate that DLP1 phosphorylation at S637 by PKD occurs in vivo using ventricular tissues from transgenic mice with cardiac-specific overexpression of constitutively active Gαq protein. In conclusion, Gq PCR-PKD signalling induces mitochondrial fragmentation and dysfunction via PKD-dependent DLP1 phosphorylation in cardiomyocytes. This study is the first to identify a novel PKD-specific substrate, DLP1 in mitochondria, as well as the functional role of PKD in cardiac mitochondria. Elucidation of these molecular mechanisms by which PKD-dependent enhanced fission mediates cardiac mitochondrial injury will provide novel insight into the relationship among mitochondrial form, function and Gq PCR signalling.


Assuntos
Dinaminas/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Mitocôndrias/patologia , Dinâmica Mitocondrial , Miócitos Cardíacos/patologia , Proteína Quinase C/metabolismo , Animais , Camundongos , Camundongos Transgênicos , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial , Poro de Transição de Permeabilidade Mitocondrial , Miócitos Cardíacos/metabolismo , Fosforilação , Ratos , Ratos Sprague-Dawley , Transdução de Sinais
2.
Am J Physiol Heart Circ Physiol ; 301(1): H147-56, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21498776

RESUMO

Cardiac fibroblasts play a key role in fibrosis development in response to stress and injury. Angiotensin II (ANG II) is a major profibrotic activator whose downstream effects (such as phospholipase Cß activation, cell proliferation, and extracellular matrix secretion) are mainly mediated via G(q)-coupled AT(1) receptors. Regulators of G protein signaling (RGS), which accelerate termination of G protein signaling, are expressed in the myocardium. Among them, RGS2 has emerged as an important player in modulating G(q)-mediated hypertrophic remodeling in cardiac myocytes. To date, no information is available on RGS in cardiac fibroblasts. We tested the hypothesis that RGS2 is an important regulator of ANG II-induced signaling and function in ventricular fibroblasts. Using an in vitro model of fibroblast activation, we have demonstrated expression of several RGS isoforms, among which only RGS2 was transiently upregulated after short-term ANG II stimulation. Similar results were obtained in fibroblasts isolated from rat hearts after in vivo ANG II infusion via minipumps for 1 day. In contrast, prolonged ANG II stimulation (3-14 days) markedly downregulated RGS2 in vivo. To delineate the functional effects of RGS expression changes, we used gain- and loss-of-function approaches. Adenovirally infected RGS2 had a negative regulatory effect on ANG II-induced phospholipase Cß activity, cell proliferation, and total collagen production, whereas RNA interference of endogenous RGS2 had opposite effects, despite the presence of several other RGS. Together, these data suggest that RGS2 is a functionally important negative regulator of ANG II-induced cardiac fibroblast responses that may play a role in ANG II-induced fibrosis development.


Assuntos
Angiotensina II/farmacologia , Fibroblastos/efeitos dos fármacos , Coração/efeitos dos fármacos , Proteínas RGS/fisiologia , Adenoviridae/genética , Angiotensina II/genética , Animais , Western Blotting , Proliferação de Células/efeitos dos fármacos , Colágeno/biossíntese , Imunofluorescência , Ventrículos do Coração , Técnicas In Vitro , Masculino , Miocárdio/citologia , Miofibroblastos/efeitos dos fármacos , Fosfolipase C beta/metabolismo , Proteínas RGS/genética , Interferência de RNA , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Regulação para Cima/fisiologia
3.
Am J Physiol Regul Integr Comp Physiol ; 301(6): R1773-8, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21957161

RESUMO

Social technology is extensively used by young adults throughout the world, and it has been suggested that interrupting access to this technology induces anxiety. However, the influence of social technology restriction on anxiety and autonomic activity in young adults has not been formally examined. Therefore, we hypothesized that restriction of social technology would increase state-anxiety and alter neural cardiovascular regulation of arterial blood pressure. Twenty-one college students (age 18-23 yr) were examined during two consecutive weeks in which social technology use was normal or restricted (randomized crossover design). Mean arterial pressure (MAP), heart rate, and muscle sympathetic nerve activity (MSNA) were measured at rest and during several classic autonomic stressors, including isometric handgrip, postexercise muscle ischemia, cold pressor test, and mental stress. Tertile analysis revealed that restriction of social technology was associated with increases (12 ± 2 au; range 5 to 21; n = 7), decreases (-6 ± 2 au; range -2 to -11; n = 6), or no change (0 ± 0 au; range -1 to 3; n = 8) in state-anxiety. Social technology restriction did not alter MAP (74 ± 1 vs. 73 ± 1 mmHg), heart rate (62 ± 2 vs. 61 ± 2 beats/min), or MSNA (9 ± 1 vs. 9 ± 1 bursts/min) at rest, and it did not alter neural or cardiovascular responses to acute stressors. In conclusion, social technology restriction appears to have an interindividual influence on anxiety, but not autonomic activity. It remains unclear how repeated bouts, or chronic restriction of social technology, influence long-term psychological and cardiovascular health.


Assuntos
Ansiedade , Sistema Nervoso Autônomo/fisiologia , Rede Social , Adolescente , Pressão Sanguínea , Telefone Celular , Computadores , Estudos Cross-Over , Correio Eletrônico , Feminino , Frequência Cardíaca , Humanos , Masculino , Fatores de Tempo , Adulto Jovem
4.
J Cell Biol ; 175(4): 541-6, 2006 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-17101697

RESUMO

Alzheimer's Disease (AD) is defined histopathologically by extracellular beta-amyloid (Abeta) fibrils plus intraneuronal tau filaments. Studies of transgenic mice and cultured cells indicate that AD is caused by a pathological cascade in which Abeta lies upstream of tau, but the steps that connect Abeta to tau have remained undefined. We demonstrate that tau confers acute hypersensitivity of microtubules to prefibrillar, extracellular Abeta in nonneuronal cells that express transfected tau and in cultured neurons that express endogenous tau. Prefibrillar Abeta42 was active at submicromolar concentrations, several-fold below those required for equivalent effects of prefibrillar Abeta40, and microtubules were insensitive to fibrillar Abeta. The active region of tau was localized to an N-terminal domain that does not bind microtubules and is not part of the region of tau that assembles into filaments. These results suggest that a seminal cell biological event in AD pathogenesis is acute, tau-dependent loss of microtubule integrity caused by exposure of neurons to readily diffusible Abeta.


Assuntos
Peptídeos beta-Amiloides/farmacologia , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Neurofibrilas/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Proteínas tau/metabolismo , Doença de Alzheimer/patologia , Animais , Células COS , Chlorocebus aethiops , Humanos , Camundongos , Microscopia de Fluorescência , Neurofibrilas/ultraestrutura , Fosforilação/efeitos dos fármacos , Estrutura Quaternária de Proteína/efeitos dos fármacos , Ratos , Proteínas tau/química
5.
Front Cardiovasc Med ; 6: 65, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31157242

RESUMO

MicroRNA-1 (miRNA-1) has been long viewed as a muscle-specific miRNA and plays a critical role in myocardium and cardiomyocytes by controlling myocyte growth and rhythm. We identified that miRNA-1 is expressed in cardiac fibroblasts, which are one of the major non-muscle cell types in myocardium and are responsible for cardiac fibrosis in pathological conditions. In this study, we aimed to investigate the effect and mechanism of action of miRNA-1 on cardiac fibroblast proliferation. Subcutaneous angiotensin II (Ang II) infusion via osmotic minipumps for 4 weeks was used to induce myocardial interstitial fibrosis in male Sprague-Dawley rats. MiRNA-1 expression was significantly down-regulated by 68% in freshly isolated ventricular fibroblasts from Ang II-infused rats than that from control rats. Similar results were obtained in adult rat ventricular fibroblasts that were stimulated in culture by Ang II or TGFß for 48 h. Functionally, overexpression of miRNA-1 inhibited fibroblast proliferation, whereas knockdown of endogenous miRNA-1 increased fibroblast proliferation. We then identified and validated cyclin D2 and cyclin-dependent kinase 6 (CDK6) as direct targets of miRNA-1 in cardiac fibroblasts using biochemical assays. Moreover, we showed that the inhibitory effects of miRNA-1 on cardiac fibroblast proliferation can be blunted by overexpression of its target, cyclin D2. In conclusion, our findings demonstrate miRNA-1 expression and regulation in adult ventricular fibroblasts, where it acts as a novel negative regulator of adult cardiac fibroblast proliferation that is at least partially mediated by direct targeting of two cell cycle regulators. Our results expand the understanding of the regulatory roles of miRNA-1 in cardiac cells (i.e., from myocytes to a major non-muscle cells in the heart).

6.
PLoS One ; 13(5): e0196714, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29715271

RESUMO

Multicellular spheroids generated through cellular self-assembly provide cytoarchitectural complexities of native tissue including three-dimensionality, extensive cell-cell contacts, and appropriate cell-extracellular matrix interactions. They are increasingly suggested as building blocks for larger engineered tissues to achieve shapes, organization, heterogeneity, and other biomimetic complexities. Application of these tissue culture platforms is of particular importance in cardiac research as the myocardium is comprised of distinct but intermingled cell types. Here, we generated scaffold-free 3D cardiac microtissue spheroids comprised of cardiac myocytes (CMs) and/or cardiac fibroblasts (CFs) and used them as building blocks to form larger microtissues with different spatial distributions of CMs and CFs. Characterization of fusing homotypic and heterotypic spheroid pairs revealed an important influence of CFs on fusion kinetics, but most strikingly showed rapid fusion kinetics between heterotypic pairs consisting of one CF and one CM spheroid, indicating that CMs and CFs self-sort in vitro into the intermixed morphology found in the healthy myocardium. We then examined electrophysiological integration of fused homotypic and heterotypic microtissues by mapping action potential propagation. Heterocellular elongated microtissues which recapitulate the disproportionate CF spatial distribution seen in the infarcted myocardium showed that action potentials propagate through CF volumes albeit with significant delay. Complementary computational modeling revealed an important role of CF sodium currents and the spatial distribution of the CM-CF boundary in action potential conduction through CF volumes. Taken together, this study provides useful insights for the development of complex, heterocellular engineered 3D tissue constructs and their engraftment via tissue fusion and has implications for arrhythmogenesis in cardiac disease and repair.


Assuntos
Potenciais de Ação/fisiologia , Fibroblastos/fisiologia , Coração/fisiologia , Miócitos Cardíacos/fisiologia , Esferoides Celulares/fisiologia , Animais , Técnicas de Cultura de Células/métodos , Matriz Extracelular/fisiologia , Miocárdio/citologia , Ratos , Ratos Sprague-Dawley , Engenharia Tecidual/métodos
7.
Biochim Biophys Acta ; 1739(2-3): 260-7, 2005 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-15615644

RESUMO

Alzheimer's disease (AD) is a progressive disease of aging primarily characterized at the behavioral level by symptoms of memory loss. The pathological hallmarks of AD are extracellular plaques and intracellular neurofibrillary tangles that are composed of filamentous polymers of beta-amyloid (Abeta) and tau, respectively. Aggregates of filaments are not unique to AD--fibrous polymers are the pathological signatures of many diseases of aging such as Huntington's disease and Parkinson's disease. Whether Abeta or tau filaments cause AD is still an open question, as a wide variety of proteins and pathways have been implicated in the initiation and advancement of the disease--processes such as apoptosis, oxidative stress, and protein degradation. That polymers are the prevalent species observed in aging disorders suggests that this morphology of aggregation represents a significant physiological role. As a consequence of an independent insult or aging itself, the filament shifts from a physiological role to one with pathological implications. The relative importance of Abeta filaments versus tau filaments has also been a focus of significant debate within the research community. Although genetic evidence indicates that Abeta filaments are an integral component in AD, only tau pathology has been found to correlate with symptom presentation in patients. Not only do tau filaments greatly contribute to the systematic loss of neurons and the pathological presentation of memory loss, but they may represent a physiological process whose regulation may be controlled.


Assuntos
Doença de Alzheimer/metabolismo , Proteínas tau/fisiologia , Envelhecimento , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/química , Animais , Apoptose , Humanos , Degeneração Neural , Emaranhados Neurofibrilares/química , Emaranhados Neurofibrilares/patologia , Estresse Oxidativo , Fosforilação , Proteínas tau/química
8.
PLoS One ; 7(7): e40048, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22802950

RESUMO

Cardiac hypertrophy is a well-established risk factor for cardiovascular morbidity and mortality. Activation of G(q/11)-mediated signaling is required for pressure overload-induced cardiomyocyte (CM) hypertrophy to develop. We previously showed that among Regulators of G protein Signaling, RGS2 selectively inhibits G(q/11) signaling and its hypertrophic effects in isolated CM. In this study, we generated transgenic mice with CM-specific, conditional RGS2 expression (dTG) to investigate whether RGS2 overexpression can be used to attenuate G(q/11)-mediated signaling and hypertrophy in vivo. Transverse aortic constriction (TAC) induced a comparable rise in ventricular mass and ANF expression and corresponding hemodynamic changes in dTG compared to wild types (WT), regardless of the TAC duration (1-8 wks) and timing of RGS2 expression (from birth or adulthood). Inhibition of endothelin-1-induced G(q/11)-mediated phospholipase C ß activity in ventricles and atrial appendages indicated functionality of transgenic RGS2. However, the inhibitory effect of transgenic RGS2 on G(q/11)-mediated PLCß activation differed between ventricles and atria: (i) in sham-operated dTG mice the magnitude of the inhibitory effect was less pronounced in ventricles than in atria, and (ii) after TAC, negative regulation of G(q/11) signaling was absent in ventricles but fully preserved in atria. Neither difference could be explained by differences in expression levels, including marked RGS2 downregulation after TAC in left ventricle and atrium. Counter-regulatory changes in other G(q/11)-regulating RGS proteins (RGS4, RGS5, RGS6) and random insertion were also excluded as potential causes. Taken together, despite ample evidence for a role of RGS2 in negatively regulating G(q/11) signaling and hypertrophy in CM, CM-specific RGS2 overexpression in transgenic mice in vivo did not lead to attenuate ventricular G(q/11)-mediated signaling and hypertrophy in response to pressure overload. Furthermore, our study suggests chamber-specific differences in the regulation of RGS2 functionality and potential future utility of the new transgenic model in mitigating G(q/11) signaling in the atria in vivo.


Assuntos
Cardiomegalia/fisiopatologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/fisiologia , Miócitos Cardíacos/fisiologia , Proteínas RGS/fisiologia , Transdução de Sinais/fisiologia , Animais , Aorta Torácica/cirurgia , Doenças da Aorta/fisiopatologia , Constrição Patológica/fisiopatologia , Camundongos , Camundongos Transgênicos , Fosfolipase C beta/metabolismo
9.
J Biol Chem ; 277(14): 12324-33, 2002 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-11809768

RESUMO

IQGAP1 colocalizes with actin filaments in the cell cortex and binds in vitro to F-actin and several signaling proteins, including calmodulin, Cdc42, Rac1, and beta-catenin. It is thought that the F-actin binding activity of IQGAP1 is regulated by its reversible association with these signaling molecules, but the mechanisms have remained obscure. Here we describe the regulatory mechanism for calmodulin. Purified adrenal IQGAP1 was found to consist of two distinct protein pools, one of which bound F-actin and lacked calmodulin, and the other of which did not bind F-actin but was tightly associated with calmodulin. Based on this finding we hypothesized that calmodulin negatively regulates binding of IQGAP1 to F-actin. This hypothesis was tested in vitro using recombinant wild type and mutated IQGAP1s and in live cells that transiently expressed IQGAP1-YFP. In vitro, the affinity of wild type IQGAP1 for F-actin decreased with increasing concentrations of calmodulin, and this effect was dramatically enhanced by Ca(2+) and required the IQ domains of IQGAP1. In addition, we found that calmodulin bound wild type IQGAP1 much more efficiently in the presence of Ca(2+) than EGTA, and all 8 IQ motifs in each IQGAP1 dimer could bind calmodulin simultaneously. In live cells, IQGAP1-YFP localized to the cell cortex, but elevation of intracellular Ca(2+) reversibly induced the fluorescent fusion protein to become diffusely distributed. Taken together, these results support a model in which a rise in free intracellular Ca(2+) promotes binding of calmodulin to IQGAP1, which in turn inhibits IQGAP1 from binding to cortical actin filaments.


Assuntos
Actinas/metabolismo , Cálcio/metabolismo , Calmodulina/metabolismo , Proteínas de Transporte/metabolismo , Proteínas Ativadoras de ras GTPase , Células 3T3 , Motivos de Aminoácidos , Animais , Calcimicina/farmacologia , Células Cultivadas , DNA Complementar/metabolismo , Dimerização , Glutationa Transferase/metabolismo , Humanos , Immunoblotting , Camundongos , Microscopia Eletrônica , Modelos Biológicos , Mutagênese Sítio-Dirigida , Plasmídeos/metabolismo , Reação em Cadeia da Polimerase , Testes de Precipitina , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA