Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Mol Syst Biol ; 17(7): e10099, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34288418

RESUMO

Mesoplasma florum, a fast-growing near-minimal organism, is a compelling model to explore rational genome designs. Using sequence and structural homology, the set of metabolic functions its genome encodes was identified, allowing the reconstruction of a metabolic network representing ˜ 30% of its protein-coding genes. Growth medium simplification enabled substrate uptake and product secretion rate quantification which, along with experimental biomass composition, were integrated as species-specific constraints to produce the functional iJL208 genome-scale model (GEM) of metabolism. Genome-wide expression and essentiality datasets as well as growth data on various carbohydrates were used to validate and refine iJL208. Discrepancies between model predictions and observations were mechanistically explained using protein structures and network analysis. iJL208 was also used to propose an in silico reduced genome. Comparing this prediction to the minimal cell JCVI-syn3.0 and its parent JCVI-syn1.0 revealed key features of a minimal gene set. iJL208 is a stepping-stone toward model-driven whole-genome engineering.


Assuntos
Genoma , Redes e Vias Metabólicas , Genoma/genética , Genômica , Redes e Vias Metabólicas/genética , Modelos Biológicos
2.
Nucleic Acids Res ; 48(D1): D402-D406, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31696234

RESUMO

The BiGG Models knowledge base (http://bigg.ucsd.edu) is a centralized repository for high-quality genome-scale metabolic models. For the past 12 years, the website has allowed users to browse and search metabolic models. Within this update, we detail new content and features in the repository, continuing the original effort to connect each model to genome annotations and external databases as well as standardization of reactions and metabolites. We describe the addition of 31 new models that expand the portion of the phylogenetic tree covered by BiGG Models. We also describe new functionality for hosting multi-strain models, which have proven to be insightful in a variety of studies centered on comparisons of related strains. Finally, the models in the knowledge base have been benchmarked using Memote, a new community-developed validator for genome-scale models to demonstrate the improving quality and transparency of model content in BiGG Models.


Assuntos
Bases de Conhecimento , Modelos Biológicos , Filogenia , Genoma , Reprodutibilidade dos Testes , Software , Interface Usuário-Computador
3.
Nucleic Acids Res ; 48(18): 10157-10163, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-32976587

RESUMO

A genome contains the information underlying an organism's form and function. Yet, we lack formal framework to represent and study this information. Here, we introduce the Bitome, a matrix composed of binary digits (bits) representing the genomic positions of genomic features. We form a Bitome for the genome of Escherichia coli K-12 MG1655. We find that: (i) genomic features are encoded unevenly, both spatially and categorically; (ii) coding and intergenic features are recapitulated at high resolution; (iii) adaptive mutations are skewed towards genomic positions with fewer features; and (iv) the Bitome enhances prediction of adaptively mutated and essential genes. The Bitome is a formal representation of a genome and may be used to study its fundamental organizational properties.


Assuntos
Escherichia coli K12/genética , Genoma Bacteriano , Genômica
4.
Nucleic Acids Res ; 47(5): 2446-2454, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30698741

RESUMO

Experimental studies of Escherichia coli K-12 MG1655 often implicate poorly annotated genes in cellular phenotypes. However, we lack a systematic understanding of these genes. How many are there? What information is available for them? And what features do they share that could explain the gap in our understanding? Efforts to build predictive, whole-cell models of E. coli inevitably face this knowledge gap. We approached these questions systematically by assembling annotations from the knowledge bases EcoCyc, EcoGene, UniProt and RegulonDB. We identified the genes that lack experimental evidence of function (the 'y-ome') which include 1600 of 4623 unique genes (34.6%), of which 111 have absolutely no evidence of function. An additional 220 genes (4.7%) are pseudogenes or phantom genes. y-ome genes tend to have lower expression levels and are enriched in the termination region of the E. coli chromosome. Where evidence is available for y-ome genes, it most often points to them being membrane proteins and transporters. We resolve the misconception that a gene in E. coli whose primary name starts with 'y' is unannotated, and we discuss the value of the y-ome for systematic improvement of E. coli knowledge bases and its extension to other organisms.


Assuntos
Escherichia coli K12/genética , Proteínas de Escherichia coli/genética , Genoma Bacteriano/genética , Software , Bases de Dados Genéticas , Regulação Bacteriana da Expressão Gênica , Anotação de Sequência Molecular
5.
BMC Bioinformatics ; 21(1): 297, 2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32650717

RESUMO

BACKGROUND: Stable isotope tracing has become an invaluable tool for probing the metabolism of biological systems. However, data analysis and visualization from metabolic tracing studies often involve multiple software packages and lack pathway architecture. A deep understanding of the metabolic contexts from such datasets is required for biological interpretation. Currently, there is no single software package that allows researchers to analyze and integrate stable isotope tracing data into annotated or custom-built metabolic networks. RESULTS: We built a standalone web-based software, Escher-Trace, for analyzing tracing data and communicating results. Escher-Trace allows users to upload baseline corrected mass spectrometer (MS) tracing data and correct for natural isotope abundance, generate publication quality graphs of metabolite labeling, and present data in the context of annotated metabolic pathways. Here we provide a detailed walk-through of how to incorporate and visualize 13C metabolic tracing data into the Escher-Trace platform. CONCLUSIONS: Escher-Trace is an open-source software for analysis and interpretation of stable isotope tracing data and is available at https://escher-trace.github.io/ .


Assuntos
Marcação por Isótopo/métodos , Redes e Vias Metabólicas , Software , Gráficos por Computador , Espectrometria de Massas/métodos
6.
BMC Bioinformatics ; 21(1): 130, 2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32245365

RESUMO

BACKGROUND: New technologies have given rise to an abundance of -omics data, particularly metabolomic data. The scale of these data introduces new challenges for the interpretation and extraction of knowledge, requiring the development of innovative computational visualization methodologies. Here, we present GEM-Vis, an original method for the visualization of time-course metabolomic data within the context of metabolic network maps. We demonstrate the utility of the GEM-Vis method by examining previously published data for two cellular systems-the human platelet and erythrocyte under cold storage for use in transfusion medicine. RESULTS: The results comprise two animated videos that allow for new insights into the metabolic state of both cell types. In the case study of the platelet metabolome during storage, the new visualization technique elucidates a nicotinamide accumulation that mirrors that of hypoxanthine and might, therefore, reflect similar pathway usage. This visual analysis provides a possible explanation for why the salvage reactions in purine metabolism exhibit lower activity during the first few days of the storage period. The second case study displays drastic changes in specific erythrocyte metabolite pools at different times during storage at different temperatures. CONCLUSIONS: The new visualization technique GEM-Vis introduced in this article constitutes a well-suitable approach for large-scale network exploration and advances hypothesis generation. This method can be applied to any system with data and a metabolic map to promote visualization and understand physiology at the network level. More broadly, we hope that our approach will provide the blueprints for new visualizations of other longitudinal -omics data types. The supplement includes a comprehensive user's guide and links to a series of tutorial videos that explain how to prepare model and data files, and how to use the software SBMLsimulator in combination with further tools to create similar animations as highlighted in the case studies.


Assuntos
Redes e Vias Metabólicas , Metabolômica/métodos , Plaquetas/metabolismo , Eritrócitos/metabolismo , Humanos , Metaboloma
7.
BMC Genomics ; 21(1): 514, 2020 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-32711472

RESUMO

BACKGROUND: Adaptive Laboratory Evolution (ALE) has emerged as an experimental approach to discover mutations that confer phenotypic functions of interest. However, the task of finding and understanding all beneficial mutations of an ALE experiment remains an open challenge for the field. To provide for better results than traditional methods of ALE mutation analysis, this work applied enrichment methods to mutations described by a multiscale annotation framework and a consolidated set of ALE experiment conditions. A total of 25,321 unique genome annotations from various sources were leveraged to describe multiple scales of mutated features in a set of 35 Escherichia coli based ALE experiments. These experiments totalled 208 independent evolutions and 2641 mutations. Additionally, mutated features were statistically associated across a total of 43 unique experimental conditions to aid in deconvoluting mutation selection pressures. RESULTS: Identifying potentially beneficial, or key, mutations was enhanced by seeking coding and non-coding genome features significantly enriched by mutations across multiple ALE replicates and scales of genome annotations. The median proportion of ALE experiment key mutations increased from 62%, with only small coding and non-coding features, to 71% with larger aggregate features. Understanding key mutations was enhanced by considering the functions of broader annotation types and the significantly associated conditions for key mutated features. The approaches developed here were used to find and characterize novel key mutations in two ALE experiments: one previously unpublished with Escherichia coli grown on glycerol as a carbon source and one previously published with Escherichia coli tolerized to high concentrations of L-serine. CONCLUSIONS: The emergent adaptive strategies represented by sets of ALE mutations became more clear upon observing the aggregation of mutated features across small to large scale genome annotations. The clarification of mutation selection pressures among the many experimental conditions also helped bring these strategies to light. This work demonstrates how multiscale genome annotation frameworks and data-driven methods can help better characterize ALE mutations, and thus help elucidate the genotype-to-phenotype relationship of the studied organism.


Assuntos
Proteínas de Escherichia coli , Laboratórios , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Genoma , Mutação
8.
Mol Syst Biol ; 15(4): e8462, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30962359

RESUMO

Evidence suggests that novel enzyme functions evolved from low-level promiscuous activities in ancestral enzymes. Yet, the evolutionary dynamics and physiological mechanisms of how such side activities contribute to systems-level adaptations are not well characterized. Furthermore, it remains untested whether knowledge of an organism's promiscuous reaction set, or underground metabolism, can aid in forecasting the genetic basis of metabolic adaptations. Here, we employ a computational model of underground metabolism and laboratory evolution experiments to examine the role of enzyme promiscuity in the acquisition and optimization of growth on predicted non-native substrates in Escherichia coli K-12 MG1655. After as few as approximately 20 generations, evolved populations repeatedly acquired the capacity to grow on five predicted non-native substrates-D-lyxose, D-2-deoxyribose, D-arabinose, m-tartrate, and monomethyl succinate. Altered promiscuous activities were shown to be directly involved in establishing high-efficiency pathways. Structural mutations shifted enzyme substrate turnover rates toward the new substrate while retaining a preference for the primary substrate. Finally, genes underlying the phenotypic innovations were accurately predicted by genome-scale model simulations of metabolism with enzyme promiscuity.


Assuntos
Enzimas/química , Enzimas/metabolismo , Escherichia coli K12/crescimento & desenvolvimento , Mutação , Adaptação Fisiológica , Arabinose/metabolismo , Simulação por Computador , Desoxirribose/metabolismo , Enzimas/genética , Escherichia coli K12/enzimologia , Escherichia coli K12/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Evolução Molecular , Especificidade por Substrato , Succinatos/metabolismo , Tartaratos/metabolismo
9.
PLoS Comput Biol ; 15(4): e1006971, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31009451

RESUMO

Genome-scale metabolic models (GEMs) are mathematically structured knowledge bases of metabolism that provide phenotypic predictions from genomic information. GEM-guided predictions of growth phenotypes rely on the accurate definition of a biomass objective function (BOF) that is designed to include key cellular biomass components such as the major macromolecules (DNA, RNA, proteins), lipids, coenzymes, inorganic ions and species-specific components. Despite its importance, no standardized computational platform is currently available to generate species-specific biomass objective functions in a data-driven, unbiased fashion. To fill this gap in the metabolic modeling software ecosystem, we implemented BOFdat, a Python package for the definition of a Biomass Objective Function from experimental data. BOFdat has a modular implementation that divides the BOF definition process into three independent modules defined here as steps: 1) the coefficients for major macromolecules are calculated, 2) coenzymes and inorganic ions are identified and their stoichiometric coefficients estimated, 3) the remaining species-specific metabolic biomass precursors are algorithmically extracted in an unbiased way from experimental data. We used BOFdat to reconstruct the BOF of the Escherichia coli model iML1515, a gold standard in the field. The BOF generated by BOFdat resulted in the most concordant biomass composition, growth rate, and gene essentiality prediction accuracy when compared to other methods. Installation instructions for BOFdat are available in the documentation and the source code is available on GitHub (https://github.com/jclachance/BOFdat).


Assuntos
Biomassa , Genômica/métodos , Redes e Vias Metabólicas , Modelos Biológicos , Software , Escherichia coli/genética , Escherichia coli/metabolismo , Genoma Bacteriano
10.
PLoS Comput Biol ; 15(6): e1007066, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31158228

RESUMO

Growth rate and yield are fundamental features of microbial growth. However, we lack a mechanistic and quantitative understanding of the rate-yield relationship. Studies pairing computational predictions with experiments have shown the importance of maintenance energy and proteome allocation in explaining rate-yield tradeoffs and overflow metabolism. Recently, adaptive evolution experiments of Escherichia coli reveal a phenotypic diversity beyond what has been explained using simple models of growth rate versus yield. Here, we identify a two-dimensional rate-yield tradeoff in adapted E. coli strains where the dimensions are (A) a tradeoff between growth rate and yield and (B) a tradeoff between substrate (glucose) uptake rate and growth yield. We employ a multi-scale modeling approach, combining a previously reported coarse-grained small-scale proteome allocation model with a fine-grained genome-scale model of metabolism and gene expression (ME-model), to develop a quantitative description of the full rate-yield relationship for E. coli K-12 MG1655. The multi-scale analysis resolves the complexity of ME-model which hindered its practical use in proteome complexity analysis, and provides a mechanistic explanation of the two-dimensional tradeoff. Further, the analysis identifies modifications to the P/O ratio and the flux allocation between glycolysis and pentose phosphate pathway (PPP) as potential mechanisms that enable the tradeoff between glucose uptake rate and growth yield. Thus, the rate-yield tradeoffs that govern microbial adaptation to new environments are more complex than previously reported, and they can be understood in mechanistic detail using a multi-scale modeling approach.


Assuntos
Proteínas de Bactérias/metabolismo , Escherichia coli/metabolismo , Evolução Molecular , Proteínas de Bactérias/genética , Escherichia coli/genética , Genoma Bacteriano/genética , Modelos Biológicos , Proteoma/genética , Proteoma/metabolismo , Biologia de Sistemas
11.
PLoS Comput Biol ; 15(3): e1006213, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30822347

RESUMO

Understanding the fundamental characteristics of microbial communities could have far reaching implications for human health and applied biotechnology. Despite this, much is still unknown regarding the genetic basis and evolutionary strategies underlying the formation of viable synthetic communities. By pairing auxotrophic mutants in co-culture, it has been demonstrated that viable nascent E. coli communities can be established where the mutant strains are metabolically coupled. A novel algorithm, OptAux, was constructed to design 61 unique multi-knockout E. coli auxotrophic strains that require significant metabolite uptake to grow. These predicted knockouts included a diverse set of novel non-specific auxotrophs that result from inhibition of major biosynthetic subsystems. Three OptAux predicted non-specific auxotrophic strains-with diverse metabolic deficiencies-were co-cultured with an L-histidine auxotroph and optimized via adaptive laboratory evolution (ALE). Time-course sequencing revealed the genetic changes employed by each strain to achieve higher community growth rates and provided insight into mechanisms for adapting to the syntrophic niche. A community model of metabolism and gene expression was utilized to predict the relative community composition and fundamental characteristics of the evolved communities. This work presents new insight into the genetic strategies underlying viable nascent community formation and a cutting-edge computational method to elucidate metabolic changes that empower the creation of cooperative communities.


Assuntos
Adaptação Fisiológica , Escherichia coli/fisiologia , Modelos Biológicos , Algoritmos , Evolução Biológica , Técnicas de Cocultura , Escherichia coli/genética , Genes Bacterianos , Mutação
12.
Nat Rev Genet ; 15(2): 107-20, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24430943

RESUMO

The prediction of cellular function from a genotype is a fundamental goal in biology. For metabolism, constraint-based modelling methods systematize biochemical, genetic and genomic knowledge into a mathematical framework that enables a mechanistic description of metabolic physiology. The use of constraint-based approaches has evolved over ~30 years, and an increasing number of studies have recently combined models with high-throughput data sets for prospective experimentation. These studies have led to validation of increasingly important and relevant biological predictions. As reviewed here, these recent successes have tangible implications in the fields of microbial evolution, interaction networks, genetic engineering and drug discovery.


Assuntos
Redes e Vias Metabólicas/fisiologia , Metabolômica/métodos , Modelos Biológicos , Transdução de Sinais/fisiologia , Simulação por Computador , Genômica/métodos , Genótipo , Redes e Vias Metabólicas/genética , Fenótipo , Proteômica/métodos , Transdução de Sinais/genética , Biologia de Sistemas/métodos
13.
PLoS Comput Biol ; 14(7): e1006302, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29975681

RESUMO

Genome-scale models of metabolism and macromolecular expression (ME-models) explicitly compute the optimal proteome composition of a growing cell. ME-models expand upon the well-established genome-scale models of metabolism (M-models), and they enable a new fundamental understanding of cellular growth. ME-models have increased predictive capabilities and accuracy due to their inclusion of the biosynthetic costs for the machinery of life, but they come with a significant increase in model size and complexity. This challenge results in models which are both difficult to compute and challenging to understand conceptually. As a result, ME-models exist for only two organisms (Escherichia coli and Thermotoga maritima) and are still used by relatively few researchers. To address these challenges, we have developed a new software framework called COBRAme for building and simulating ME-models. It is coded in Python and built on COBRApy, a popular platform for using M-models. COBRAme streamlines computation and analysis of ME-models. It provides tools to simplify constructing and editing ME-models to enable ME-model reconstructions for new organisms. We used COBRAme to reconstruct a condensed E. coli ME-model called iJL1678b-ME. This reformulated model gives functionally identical solutions to previous E. coli ME-models while using 1/6 the number of free variables and solving in less than 10 minutes, a marked improvement over the 6 hour solve time of previous ME-model formulations. Errors in previous ME-models were also corrected leading to 52 additional genes that must be expressed in iJL1678b-ME to grow aerobically in glucose minimal in silico media. This manuscript outlines the architecture of COBRAme and demonstrates how ME-models can be created, modified, and shared most efficiently using the new software framework.


Assuntos
Simulação por Computador , Expressão Gênica , Metabolismo/genética , Modelos Genéticos , Design de Software , Algoritmos , Genoma
14.
Theor Appl Genet ; 131(1): 27-41, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28980046

RESUMO

KEY MESSAGE: A novel Rpp gene from PI 605823 for resistance to Phakopsora pachyrhizi was mapped on chromosome 19. Soybean rust, caused by the obligate biotrophic fungal pathogen Phakopsora pachyrhizi Syd. & P. Syd, is a disease threat to soybean production in regions of the world with mild winters. Host plant resistance conditioned by resistance to P. pachyrhizi (Rpp) genes has been found in numerous soybean accessions, and at least 10 Rpp genes or alleles have been mapped to six genetic loci. Identifying additional disease-resistance genes will facilitate development of soybean cultivars with durable resistance. PI 605823, a plant introduction from Vietnam, was previously identified as resistant to US populations of P. pachyrhizi in greenhouse and field trials. In this study, bulked segregant analysis using an F2 population derived from 'Williams 82' × PI 605823 identified a genomic region associated with resistance to P. pachyrhizi isolate GA12, which had been collected in the US State of Georgia in 2012. To further map the resistance locus, linkage mapping was carried out using single-nucleotide polymorphism markers and phenotypic data from greenhouse assays with an F2:3 population derived from Williams 82 × PI 605823 and an F4:5 population derived from '5601T' × PI 605823. A novel resistance gene, Rpp7, was mapped to a 154-kb interval (Gm19: 39,462,291-39,616,643 Glyma.Wm82.a2) on chromosome 19 that is different from the genomic locations of any previously reported Rpp genes. This new gene could be incorporated into elite breeding lines to help provide more durable resistance to soybean rust.


Assuntos
Resistência à Doença/genética , Genes de Plantas , Glycine max/genética , Doenças das Plantas/genética , Mapeamento Cromossômico , Genótipo , Haplótipos , Phakopsora pachyrhizi , Fenótipo , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único , Glycine max/microbiologia
15.
Nucleic Acids Res ; 44(D1): D515-22, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26476456

RESUMO

Genome-scale metabolic models are mathematically-structured knowledge bases that can be used to predict metabolic pathway usage and growth phenotypes. Furthermore, they can generate and test hypotheses when integrated with experimental data. To maximize the value of these models, centralized repositories of high-quality models must be established, models must adhere to established standards and model components must be linked to relevant databases. Tools for model visualization further enhance their utility. To meet these needs, we present BiGG Models (http://bigg.ucsd.edu), a completely redesigned Biochemical, Genetic and Genomic knowledge base. BiGG Models contains more than 75 high-quality, manually-curated genome-scale metabolic models. On the website, users can browse, search and visualize models. BiGG Models connects genome-scale models to genome annotations and external databases. Reaction and metabolite identifiers have been standardized across models to conform to community standards and enable rapid comparison across models. Furthermore, BiGG Models provides a comprehensive application programming interface for accessing BiGG Models with modeling and analysis tools. As a resource for highly curated, standardized and accessible models of metabolism, BiGG Models will facilitate diverse systems biology studies and support knowledge-based analysis of diverse experimental data.


Assuntos
Bases de Dados de Compostos Químicos , Genoma , Redes e Vias Metabólicas/genética , Modelos Genéticos , Genômica/normas , Bases de Conhecimento , Metabolômica
16.
Psychol Res ; 82(3): 507-519, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-28255951

RESUMO

A critical question for theories of spatial vision concerns the nature of the inputs to perception. The action-specific account asserts that information related to action, specifically a perceiver's ability to perform the intended action, is one of these sources of information. This claim challenges assumptions about the mind in general and perception in particular, and not surprisingly, has been met with much resistance. Alternative explanations include that these effects are due to response bias, rather than genuine differences in perception. Using a paradigm in which ease to block a ball impacts estimated speed of the ball, participants were given explicit feedback about their perceptual judgements to test the response bias alternative. Despite the feedback, the action-specific effect still persisted, thus ruling out a response-bias interpretation. Coupled with other research ruling out additional alternative explanations, the current findings offer an important step towards the claim that a person's ability to act truly influences spatial perception.


Assuntos
Retroalimentação Psicológica/fisiologia , Percepção Espacial/fisiologia , Percepção Visual/fisiologia , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
17.
Metab Eng ; 39: 220-227, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27986597

RESUMO

The metabolic byproducts secreted by growing cells can be easily measured and provide a window into the state of a cell; they have been essential to the development of microbiology, cancer biology, and biotechnology. Progress in computational modeling of cells has made it possible to predict metabolic byproduct secretion with bottom-up reconstructions of metabolic networks. However, owing to a lack of data, it has not been possible to validate these predictions across a wide range of strains and conditions. Through literature mining, we were able to generate a database of Escherichia coli strains and their experimentally measured byproduct secretions. We simulated these strains in six historical genome-scale models of E. coli, and we report that the predictive power of the models has increased as they have expanded in size and scope. The latest genome-scale model of metabolism correctly predicts byproduct secretion for 35/89 (39%) of designs. The next-generation genome-scale model of metabolism and gene expression (ME-model) correctly predicts byproduct secretion for 40/89 (45%) of designs, and we show that ME-model predictions could be further improved through kinetic parameterization. We analyze the failure modes of these simulations and discuss opportunities to improve prediction of byproduct secretion.


Assuntos
Biopolímeros/metabolismo , Mineração de Dados/métodos , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Análise do Fluxo Metabólico/métodos , Modelos Biológicos , Simulação por Computador , Regulação Bacteriana da Expressão Gênica/fisiologia , Publicações Periódicas como Assunto
18.
Theor Appl Genet ; 129(3): 517-34, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26704418

RESUMO

KEY MESSAGE: The Rpp6 locus of PI 567102B was mapped from 5,953,237 to 5,998,461 bp (chromosome 18); and a novel allele at the Rpp6 locus or tightly linked gene Rpp[PI567068A] of PI 567068A was mapped from 5,998,461 to 6,160,481 bp. Soybean rust (SBR), caused by the obligate, fungal pathogen Phakopsora pachyrhizi is an economic threat to soybean production, especially in the Americas. Host plant resistance is an important management strategy for SBR. The most recently described resistance to P. pachyrhizi (Rpp) gene is Rpp6 contributed by PI 567102B. Rpp6 was previously mapped to an interval of over four million base pairs on chromosome 18. PI 567068A was recently demonstrated to possess a resistance gene near the Rpp6 locus, yet PI 567068A gave a differential isolate reaction to several international isolates of P. pachyrhizi. The goals of this research were to fine map the Rpp6 locus of PI 567102B and PI 567068A and determine whether or not PI 567068A harbors a novel Rpp6 allele or another allele at a tightly linked resistance locus. Linkage mapping in this study mapped Rpp6 from 5,953,237 to 5,998,461 bp (LOD score of 58.3) and the resistance from PI 567068A from 5,998,461 to 6,160,481 bp (LOD score of 4.4) (Wm82.a1 genome sequence). QTL peaks were 139,033 bp apart from one another as determined by the most significant SNPs in QTL mapping. The results of haplotype analysis demonstrated that PI 567102B and PI 567068A share the same haplotype in the resistance locus containing both Rpp alleles, which was designated as the Rpp6/Rpp[PI567068A] haplotype. The Rpp6/Rpp[PI567068A] haplotype identified in this study can be used as a tool to rapidly screen other genotypes that possess a Rpp gene(s) and detect resistance at the Rpp6 locus in diverse germplasm.


Assuntos
Resistência à Doença/genética , Glycine max/genética , Phakopsora pachyrhizi/patogenicidade , Doenças das Plantas/genética , Alelos , Mapeamento Cromossômico , Genes de Plantas , Genótipo , Haplótipos , Fenótipo , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Glycine max/microbiologia
19.
PLoS Comput Biol ; 11(8): e1004321, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26313928

RESUMO

Escher is a web application for visualizing data on biological pathways. Three key features make Escher a uniquely effective tool for pathway visualization. First, users can rapidly design new pathway maps. Escher provides pathway suggestions based on user data and genome-scale models, so users can draw pathways in a semi-automated way. Second, users can visualize data related to genes or proteins on the associated reactions and pathways, using rules that define which enzymes catalyze each reaction. Thus, users can identify trends in common genomic data types (e.g. RNA-Seq, proteomics, ChIP)--in conjunction with metabolite- and reaction-oriented data types (e.g. metabolomics, fluxomics). Third, Escher harnesses the strengths of web technologies (SVG, D3, developer tools) so that visualizations can be rapidly adapted, extended, shared, and embedded. This paper provides examples of each of these features and explains how the development approach used for Escher can be used to guide the development of future visualization tools.


Assuntos
Biologia Computacional/métodos , Gráficos por Computador , Internet , Software , Processamento de Imagem Assistida por Computador , Redes e Vias Metabólicas/fisiologia , Modelos Biológicos , Transdução de Sinais/fisiologia , Transcriptoma/fisiologia
20.
Behav Brain Sci ; 39: e261, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28355850

RESUMO

The visual system is influenced by action. Objects that are easier to reach or catch look closer and slower, respectively. Here, we describe evidence for one action-specific effect, and show that none of the six pitfalls can account for the results. Vision is not an isolate module, as shown by this top-down effect of action on perception.


Assuntos
Percepção , Visão Ocular , Humanos , Desempenho Psicomotor
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA