Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; 43(15): e2200070, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35298093

RESUMO

For utilizing organic solar cells (OSCs) for commercial applications, reducing the overall cost of the photo absorbent materials is also very crucial. Herein, such a challenge is addressed by synergistically controlling the amount of fluorine (F)-substituents (n = 2, 4) on a low-cost wide-bandgap molecular design involving alternate fluorinated-thienyl benzodithiophene donor and 2,5-difluoro benzene (2FBn) or 2,3,5,6 tetrafluorobenzene (4FBn) to form two new polymer donors PBDT-2FBn and PBDT-4FBn, respectively. As expected, sequential fluorination causes a lowering of the frontier energy levels and planarization of polymer backbone via F···S and C-H···F noncovalent molecular locks, which results in more pronounced molecular packing and enhanced crystallinity from PBDT-2FBn to PBDT-4FBn. By mixing with IT-4F acceptor, PBDT-2FBn:IT-4F-based blend demonstrates favorable molecular orientation with shorter π-π stacking distance, higher carrier mobilities and desirable nanoscale morphology, hence delivering a higher power conversion efficiency (PCE) of 9.3% than PBDT-2FBn:IT-4F counterpart (8.6%). Furthermore, pairing PBDT-2FBn with BTP-BO-4Cl acceptor further improved absorption range and promoted privileged morphology for efficient exciton dissociation and charge transport, resulting in further improvement of PCE to 10.2% with remarkably low energy loss of 0.46 eV. Consequently, this study provides valuable guidelines for designing efficient and low-cost polymer donors for OSC applications.

2.
Macromol Rapid Commun ; 42(9): e2000743, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33644922

RESUMO

Design and development of wide bandgap (WBG) polymer donors with low-lying highest occupied molecular orbitals (HOMOs) are increasingly gaining attention in non-fullerene organic photovoltaics since such donors can synergistically enhance power conversion efficiency (PCE) by simultaneously minimizing photon energy loss (Eloss ) and enhancing the spectral response. In this contribution, three new WBG polymer donors, P1, P2, and P3, are prepared by adding phenylene cores with a different number of fluorine (F) substituents (n = 0, 2, and 4, respectively) to dicarboxylate bithiophene-based acceptor units. As predicted, fluorination effectively aides in the lowering of HOMO energy levels, tailoring of the coplanarity and molecular ordering in the polymers. Thus, fluorinated P2 and P3 polymers show higher coplanarity and more intense interchain aggregation than P1, leading to higher charge carrier mobilities and superior phase-separated morphology in the optimized blend films with IT-4F. As a result, both P2:IT-4F and P3:IT-4F realize the best PCEs of 6.89% and 7.03% (vs 0.16% for P1:IT-4F) with lower Eloss values of 0.65 and 0.55 eV, respectively. These results signify the importance of using phenylene units with sequential fluorination in polymer backbone for modifying the optoelectronic properties and realizing low Eloss values by synergistically lowering the HOMO energy levels.


Assuntos
Energia Solar , Ácidos Carboxílicos , Fontes de Energia Elétrica , Halogenação , Polímeros
3.
ACS Appl Mater Interfaces ; 13(6): 7405-7415, 2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33534549

RESUMO

The design and synthesis of a stable and efficient hole-transport material (HTM) for perovskite solar cells (PSCs) are one of the most demanding research areas. At present, 2,2',7,7'-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9'-spirobifluorene (spiro-MeOTAD) is a commonly used HTM in the fabrication of high-efficiency PSCs; however, its complicated synthesis, addition of a dopant in order to realize the best efficiency, and high cost are major challenges for the further development of PSCs. Herein, various diketopyrrolopyrrole-based small molecules were synthesized with the same backbone but distinct alkyl side-chain substituents (i.e., 2-ethylhexyl-, n-hexyl-, ((methoxyethoxy)ethoxy)ethyl-, and (2-((2-methoxyethoxy)ethoxy)ethyl)acetamide, designated as D-1, D-2, D-3, and D-4, respectively) as HTMs. The variation in the alkyl chain has shown obvious effects on the optical and electrochemical properties as well as on the molecular packing and film-forming ability. Consequently, the power conversion efficiency (PCE) of the PSC under one sun illumination (100 mW cm-2) is shown to increase in the order of D-1 (8.32%) < D-2 (11.12%) < D-3 (12.05%) < D-4 (17.64%). Various characterization techniques reveal that the superior performance of D-4 can be ascribed to the well-aligned highest occupied molecular orbital energy level with the counter electrode, the more compact π-π stacking with a higher coherence length, and the excellent hole mobility of 1.09 × 10-3 cm2 V-1 s-1, thus providing excellent energetics for effective charge transport with minimal charge-carrier recombination. Furthermore, the addition of the dopant Li-TFSI in D-4 is shown to deliver a remarkable PCE of 20.19%, along with a short-circuit current density (JSC), open-circuit voltage (VOC), and fill factor (FF) of 22.94 mA cm-2, 1.14 V, and 73.87%, respectively, and superior stability compared to that of other HTMs. These results demonstrate the effectiveness of side-chain engineering for tailoring the properties of HTMs, thus offering new design tactics to fabricate for the synthesis of highly efficient and stable HTMs for PSCs.

4.
Adv Mater ; 32(11): e1906175, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32020712

RESUMO

The pursuit of low-cost, flexible, and lightweight renewable power resources has led to outstanding advancements in organic solar cells (OSCs). Among the successful design principles developed for synthesizing efficient conjugated electron donor (ED) or acceptor (EA) units for OSCs, chlorination has recently emerged as a reliable approach, despite being neglected over the years. In fact, several recent studies have indicated that chlorination is more potent for large-scale production than the highly studied fluorination in several aspects, such as easy and low-cost synthesis of materials, lowering energy levels, easy tuning of molecular orientation, and morphology, thus realizing impressive power conversion efficiencies in OSCs up to 17%. Herein, an up-to-date summary of the current progress in photovoltaic results realized by incorporating a chlorinated ED or EA into OSCs is presented to recognize the benefits and drawbacks of this interesting substituent in photoactive materials. Furthermore, other aspects of chlorinated materials for application in all-small-molecule, semitransparent, tandem, ternary, single-component, and indoor OSCs are also presented. Consequently, a concise outlook is provided for future design and development of chlorinated ED or EA units, which will facilitate utilization of this approach to achieve the goal of low-cost and large-area OSCs.

5.
ACS Appl Mater Interfaces ; 9(14): 12617-12628, 2017 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-28317382

RESUMO

A series of four donor-acceptor alternating copolymers based on dialkyloxy-benzothiadiazole (ROBT) as an acceptor and thienoacenes as donor units were synthesized and tested for polymer solar cells (PSCs). These new polymers had different donor units with varied electron-donating ability (thieno[3,2-b]thiophene (TT), dithieno[3,2-b:2',3'-d]thiophene (DTT), benzo[1,2-b:4,5-b']dithiophene (BDT), and naphtha[1,2-b:5,6-b']dithiophene (NDT)) in the polymer backbone. To understand the effect of these thienoacenes on the optoelectronic and photovoltaic properties of the copolymers, we systematically analyzed and compared the energy levels, crystallinity, morphology, charge recombination, and charge carrier mobility in the resulting polymers. In this series, optimized photovoltaic cells yielded power conversion efficiency (PCE) values of 6.25% (TT), 9.02% (DTT), 6.34% (BDT), and 2.29% (NDT) with different thienoacene donors. The introduction of DTT into the thienoacene-ROBT polymer enabled the generation of well-ordered molecular packings with a π-π stacking distance of 3.72 Å, high charge mobilities, and an interconnected nanofibrillar morphology in blend films. As a result, the PSC employing the polymer with DTT exhibited the highest PCE of 9.02%. Thus, our structure-property relationship studies of thienoacene-ROBT-based polymers emphasize that the molecular design of the polymers must be carefully optimized to develop high efficient PSCs. These findings will help us to understand the impact of the donor thienoacene on the optoelectronic and photovoltaic performance of polymers.

6.
ACS Appl Mater Interfaces ; 8(20): 12940-50, 2016 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-27156705

RESUMO

A series of small compound materials based on benzodithiophene (BDT) and diketopyrrolopyrrole (DPP) with three different alkyl side chains were synthesized and used for organic photovoltaics. These small compounds had different alkyl branches (i.e., 2-ethylhexyl (EH), 2-butyloctyl (BO), and 2-hexyldecyl (HD)) attached to DPP units. Thin films made of these compounds were characterized and their solar cell parameters were measured in order to systematically analyze influences of the different side chains of compounds on the film microstructure, molecular packing, and hence, charge-transport and recombination properties. The relatively shorter side chains in the small molecules enabled more ordered packing structures with higher crystallinities, which resulted in higher carrier mobilities and less recombination factors; the small molecule with the EH branches exhibited the best semiconducting properties with a power conversion efficiency of up to 5.54% in solar cell devices. Our study suggested that tuning the alkyl chain length of semiconducting molecules is a powerful strategy for achieving high performance of organic photovoltaics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA