Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 62(37): 14896-14901, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37678159

RESUMO

Volatile organic compounds (VOCs) have harmful effects on human health and the environment but detecting low levels of VOCs is challenging due to a lack of reliable biomarkers. However, incorporating gold nanoparticles (Au NPs) into metal-organic frameworks (MOFs) shows promise for VOC detection. In this study, we developed nanoscale Au@UiO-66 that exhibited surface-enhanced Raman scattering (SERS) activity even at very low levels of toluene vapors (down to 1.0 ppm) due to the thickness of the shell and strong π-π interactions between benzenyl-type linkers and toluene. The UiO-66 shell also increased the thermal stability of the Au NPs, preventing aggregation up to 550 °C. This development may be useful for sensitive detection of VOCs for environmental protection purposes.

2.
Molecules ; 25(8)2020 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-32340223

RESUMO

We present a dielectric spectroscopy study of dipolar dynamics in the hydrated UiO-66(Zr) type metal-organic frameworks (MOFs) functionalized with -NH2 and -F groups. Experiments are performed in a broad temperature and frequency ranges allowing us to probe several dipolar relaxations. For both samples at temperature below 220 K, we observe confined supercooled water dynamics, which can be described by the Arrhenius law. At slightly higher temperature, a second less pronounced dipolar relaxation is identified, and its origin is discussed. At even higher temperature, the dielectric permittivity exhibits anomalous increase with increasing temperature due to the proton conductivity. Upon further heating, the permittivity shows a sudden decrease indicating a reversible removal of water molecules. Measurements of the dehydrated samples reveal absence of all three dipolar processes.


Assuntos
Espectroscopia Dielétrica , Estruturas Metalorgânicas/química , Compostos Organometálicos/química , Ácidos Ftálicos/química , Água/química , Algoritmos , Modelos Químicos , Estrutura Molecular , Temperatura
3.
Polymers (Basel) ; 16(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38475287

RESUMO

This work presents the dielectric and ultrasonic properties of polydimethylsiloxane (PDMS) nanocomposites filled with titanium dioxide nanoparticles. The dielectric study was performed over a very broad range of frequencies (20 Hz-3 THz). The dielectric permittivity was almost frequency-independent in all the composites at room temperature over the whole range of measurement frequencies, and the dielectric losses were very low under these conditions (less than 2). The dielectric permittivity strongly increases with the nanoparticle concentration according to the Maxwell-Garnet model. Therefore, the investigated composites are suitable for various flexible electronic applications, particularly in the microwave and terahertz frequency ranges. Dielectric dispersion and increased attenuation of ultrasonic waves were observed at lower temperatures (below 280 K) due to the relaxation of polymer molecules at the PDMS/TiO2 interface and in the polymer matrix. The relaxation time followed the Vogel-Vulcher law, while the freezing temperature increased with the titanium dioxide concentration due to interactions between the polymer molecules and nanoparticles. The significant hysteresis in the ultrasonic properties indicated that titanium dioxide acts as a crystallization center. This is confirmed by the correlation between the hysteresis in the ultrasonic properties and the structure of the composites. The small difference in the activation energy values obtained from the ultrasonic and dielectric investigations is related to the fact that the dielectric dispersion is slightly broader than the Debye-type dielectric dispersion.

4.
ACS Omega ; 8(15): 13911-13919, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37091415

RESUMO

A series of highly flexible and environmentally friendly composites based on polydimethylsiloxane (PDMS) filled with 200 nm size ferroelectric BaTiO3 (BTO) particles at different concentrations (from 7 to 23 vol %) have been fabricated by a simple dispersion method. The dielectric, piezoelectric, and ultrasonic properties have been studied. The ferroelectric state of BTO was confirmed by differential scanning calorimetry and ultrasonic spectroscopy. The addition of BTO into PDMS strongly affects the dielectric properties of the composites. At low temperatures close to 160 K, the PDMS matrix exhibits a dielectric anomaly related to a dynamic glass transition, which shifts to higher temperatures as the BTO content increases due to the strong interaction between polymer chains and nanoparticles. Ultrasonic measurements demonstrate the appearance of a piezoelectric voltage signal on a thin plate of the composite with the highest available filler concentration (23 vol %) under longitudinal stress applied by a 10 MHz ultrasonic wave. As a result, at room temperature, the detected signal is characterized by output voltage and specific stored energy values of 10 mV and 367.3 MeV/m2, respectively, followed by a further increase with cooling to 35 mV at 150 K. The proposed BTO/PDMS composite system is thus a potential candidate for nanogenerators, namely, a simple, flexible, and lead-free device converting high-frequency (10 MHz) mechanical vibrations into electrical voltage.

5.
RSC Adv ; 13(1): 41-46, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36605651

RESUMO

MOFs have been effectively used to magnify the triboelectric charge of polymers. However, so far the individual triboelectric properties and charge transfer mechanisms of MOFs haven't been reported. Triboelectric property investigation for selected MOFs show that the main mechanism for MOF triboelectrification in contact with metals is electron transfer.

6.
Chem Mater ; 34(22): 10104-10112, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36439319

RESUMO

Mixing molecular cations in hybrid lead halide perovskites is a highly effective approach to enhance the stability and performance of optoelectronic devices based on these compounds. In this work, we prepare and study novel mixed 3D methylammonium (MA)-ethylammonium (EA) MA1-x EA x PbI3 (x < 0.4) hybrid perovskites. We use a suite of different techniques to determine the structural phase diagram, cation dynamics, and photoluminescence properties of these compounds. Upon introduction of EA, we observe a gradual lowering of the phase-transition temperatures, indicating stabilization of the cubic phase. For mixing levels higher than 30%, we obtain a complete suppression of the low-temperature phase transition and formation of a new tetragonal phase with a different symmetry. We use broad-band dielectric spectroscopy to study the dielectric response of the mixed compounds in an extensive frequency range, which allows us to distinguish and characterize three distinct dipolar relaxation processes related to the molecular cation dynamics. We observe that mixing increases the rotation barrier of the MA cations and tunes the dielectric permittivity values. For the highest mixing levels, we observe the signatures of the dipolar glass phase formation. Our findings are supported by density functional theory calculations. Our photoluminescence measurements reveal a small change of the band gap upon mixing, indicating the suitability of these compounds for optoelectronic applications.

7.
Nat Commun ; 11(1): 5103, 2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33037192

RESUMO

Cation engineering provides a route to control the structure and properties of hybrid halide perovskites, which has resulted in the highest performance solar cells based on mixtures of Cs, methylammonium, and formamidinium. Here, we present a multi-technique experimental and theoretical study of structural phase transitions, structural phases and dipolar dynamics in the mixed methylammonium/dimethylammonium MA1-xDMAxPbBr3 hybrid perovskites (0 ≤ x ≤ 1). Our results demonstrate a significant suppression of the structural phase transitions, enhanced disorder and stabilization of the cubic phase even for a small amount of dimethylammonium cations. As the dimethylammonium concentration approaches the solubility limit in MAPbBr3, we observe the disappearance of the structural phase transitions and indications of a glassy dipolar phase. We also reveal a significant tunability of the dielectric permittivity upon mixing of the molecular cations that arises from frustrated electric dipoles.

8.
Artigo em Inglês | MEDLINE | ID: mdl-17186912

RESUMO

Dielectric properties of barium titanate (BaTiO3) particles, synthesized directly in the pores of MCM-41 materials, have been investigated in the frequency range from 20 Hz to 1 MHz for temperature intervals from 100 K to 500 K. The dielectric spectra of BaTiO3 confined in these molecular sieves were compared with the results obtained from the investigation of pure MCM-41 materials. Obtained results confirmed successful incorporation of BaTiO3 into porous matrix, but no phase transition from paraelectric to ferroelectric phase was observed due to the particle size being smaller than the critical size. Also, the overall dielectric response of investigated materials is strongly influenced by adsorbed water molecules.


Assuntos
Compostos de Bário/química , Compostos de Bário/efeitos da radiação , Eletroquímica/métodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Titânio/química , Titânio/efeitos da radiação , Impedância Elétrica , Eletroquímica/instrumentação , Campos Eletromagnéticos , Nanoestruturas/efeitos da radiação , Tamanho da Partícula , Porosidade , Análise Espectral
9.
Artigo em Inglês | MEDLINE | ID: mdl-23007754

RESUMO

We have investigated the dielectric response of Ba(2)Pr(x)Nd(1-x)FeNb(4)O(15) ceramics (x = 0, 0.2, 0.5, 0.6, 0.8, 1) in the frequency range from 20 Hz to 1 GHz. The obtained results confirmed the continuous transformation from the ferroelectric behavior of Ba2NdFeNb4O15 to the pure relaxor response of Ba(2)PrFeNb(4)O(15) with increasing x. For intermediate x values, coexisting ferroelectric transition and relaxor dielectric signatures were observed, corresponding to two different phenomena in the framework of these materials. Increasing the amount of Pr decreases the ferroelectric phase transition temperatures in these ceramics; a large cooling¿heating hysteresis exceeding 50K was also observed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA