Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Angew Chem Int Ed Engl ; 63(14): e202317817, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38342757

RESUMO

The differential enzymatic activity in the endo/lysosomes of particular cells could trigger targeted endosomal escape functions, enabling selective intracellular protein delivery. However, this strategy may be jeopardized due to protein degradation during endosomal trafficking. Herein, using custom made fluorescent probes to assess the endosomal activity of cathepsin B (CTSB) and protein degradation, we found that certain cancer cells with hyperacidified endosomes grant a spatiotemporal window where CTSB activity surpass protein digestion. This inspired the engineering of antibody-loaded polymeric nanocarriers having CTSB-activatable endosomal escape ability. The nanocarriers selectively escaped from the endo/lysosomes in the cells with high endosomal CTSB activity and delivered active antibodies to intracellular targets. This study provides a viable strategy for cell-specific protein delivery using stimuli-responsive nanocarriers with controlled endosomal escape.


Assuntos
Endossomos , Neoplasias , Endossomos/metabolismo , Anticorpos/metabolismo , Polímeros/metabolismo , Lisossomos/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo
2.
Acc Chem Res ; 53(12): 2765-2776, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33161717

RESUMO

Therapeutic manipulation of the immune system against cancer has revolutionized the treatment of several advanced-stage tumors. While many have benefited from these treatments, the proportion of patients responding to immunotherapies is still low. Nanomedicines have promise to revolutionize tumor treatments through spatiotemporal control of drug activity. Such control of drug function could allow enhanced therapeutic actions of immunotherapies and reduced side effects. However, only a handful of formulations have been able to reach human clinical studies so far, and even fewer systems are being used in the clinic. Among translatable formulations, self-assembled nanomedicines have shown unique and versatile features for dealing with the heterogeneity and malignancy of tumors in the clinic. Such nanomedicines can be designed to promote antitumor immune responses through a series of immunopotentiating functions after being directly injected into tumors, or achieving selective tumor accumulation upon intravenous administration. Thus, tumor-targeted nanomedicines can enhance antitumor immunity by several mechanisms, such as inducing immunogenic damage to cancer cells, altering the tumor immune microenvironment by delivering immunomodulators, or eliminating or reprogramming immunosuppressive cells, enhancing the exposure of tumor-associated antigens to antigen presenting cells, stimulating innate immunity mechanisms, and facilitating the infiltration of antitumor immune cells and their interaction with cancer cells. Moreover, nanomedicines can be engineered to sense intratumoral stimuli for activating specific immune responses or installed with ligands for increasing drug levels in tumors, granting subcellular delivery, and triggering immune signals and proliferation of immune cells. Thus, the ability of nanomedicines to exert immunomodulatory functions selectively in tumor and tumor-associated tissues, such as draining lymph nodes, increases the efficiency of the treatments, while avoiding systemic immunosuppressive toxicities and the exacerbation of adverse immune responses. Moreover, the compartmentalized structure of self-assembled nanomedicines offers the possibility to coload a variety of drugs for controlled pharmacokinetics, enhanced tumor delivery, and synergistic therapeutic output. Also, by integrating imaging functionalities into nanomedicines, it is possible to develop theranostic platforms reporting the immune settings of tumors as well as the effects of nanomedicines on the tumor immune microenvironment. Herein, we critically reviewed significant strategies for developing nanomedicines capable of potentiating antitumor immune responses by surmounting biological barriers and modulating antitumor immune signals. Moreover, the potential of these nanomedicines for developing innovative anticancer treatments by targeting particular cells is discussed. Finally, we present our perspectives on the awaiting challenges and future directions of nanomedicines in the age of immunotherapy.


Assuntos
Imunoterapia , Nanomedicina , Neoplasias/terapia , Células Apresentadoras de Antígenos/citologia , Células Apresentadoras de Antígenos/efeitos dos fármacos , Células Apresentadoras de Antígenos/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Humanos , Inibidores de Checkpoint Imunológico/química , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Morte Celular Imunogênica/efeitos dos fármacos , Imunoterapia/métodos , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/uso terapêutico , Microambiente Tumoral
3.
Mol Pharm ; 17(6): 1835-1847, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32315193

RESUMO

Inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase of the family of statins have been suggested as therapeutic options in various tumors. Atorvastatin is a statin with the potential to cross the blood-brain barrier; however, the concentrations necessary for a cytotoxic effect against cancer cells exceed the concentrations achievable via oral administration, which made the development of a novel atorvastatin formulation necessary. We characterized the drug loading and basic physicochemical characteristics of micellar atorvastatin formulations and tested their cytotoxicity against a panel of different glioblastoma cell lines. In addition, activity against tumor spheroids formed from mouse glioma and mouse cancer stem cells, respectively, was evaluated. Our results show good activity of atorvastatin against all tested cell lines. Interestingly, in the three-dimensional (3D) models, growth inhibition was more pronounced for the micellar formulation compared to free atorvastatin. Finally, atorvastatin penetration across a blood-brain barrier model obtained from human induced-pluripotent stem cells was evaluated. Our results suggest that the presented micelles may enable much higher serum concentrations than possible by oral administration; however, if transport across the blood-brain barrier is sufficient to reach the therapeutic atorvastatin concentration for the treatment of glioblastoma via intravenous administration remains unclear.


Assuntos
Antineoplásicos/farmacologia , Atorvastatina/química , Atorvastatina/farmacologia , Glioblastoma/tratamento farmacológico , Antineoplásicos/química , Barreira Hematoencefálica , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Composição de Medicamentos , Difusão Dinâmica da Luz , Glioblastoma/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Micelas , Nanomedicina/métodos , Células-Tronco Neoplásicas/efeitos dos fármacos , Oxazóis/química
4.
Mol Ther ; 20(4): 769-77, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22314292

RESUMO

Malignant pleural mesothelioma (MPM) is highly intractable and readily spreads throughout the surface of the pleural cavity, and these cells have been shown to express urokinase-type plasminogen activator receptor (uPAR). We here examined the potential of our new and powerful recombinant Sendai virus (rSeV), which shows uPAR-specific cell-to-cell fusion activity (rSeV/dMFct14 (uPA2), named "BioKnife"), for tumor cell killing in two independent orthotopic xenograft models of human. Multicycle treatment using BioKnife resulted in the efficient rescue of these models, in association with tumor-specific fusion and apoptosis. Such an effect was also seen on both MSTO-211H and H226 cells in vitro; however, we confirmed that the latter expressed uPAR but not uPA. Of interest, infection with BioKnife strongly facilitated the uPA release from H226 cells, and this effect was completely abolished by use of either pyrrolidine dithiocarbamate (PDTC) or BioKnife expressing the C-terminus-deleted dominant negative inhibitor for retinoic acid-inducible gene-I (RIG-IC), indicating that BioKnife-dependent expression of uPA was mediated by the RIG-I/nuclear factor-κB (NF-κB) axis, detecting RNA viral genome replication. Therefore, these results suggest a proof of concept that the tumor cell-killing mechanism via BioKnife may have significant potential to treat patients with MPM that is characterized by frequent uPAR expression in a clinical setting.


Assuntos
Mesotelioma/metabolismo , Mesotelioma/terapia , Vírus Oncolíticos/fisiologia , Neoplasias Pleurais/metabolismo , Neoplasias Pleurais/terapia , Vírus Sendai/fisiologia , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Animais , Western Blotting , Linhagem Celular Tumoral , Ensaio de Imunoadsorção Enzimática , Humanos , Imuno-Histoquímica , Mesotelioma/genética , Camundongos , Vírus Oncolíticos/genética , Neoplasias Pleurais/genética , RNA Interferente Pequeno , Receptores de Ativador de Plasminogênio Tipo Uroquinase/genética , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Vírus Sendai/genética , Ativador de Plasminogênio Tipo Uroquinase/genética , Ensaios Antitumorais Modelo de Xenoenxerto
5.
J Control Release ; 353: 956-964, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36516902

RESUMO

Nanocarrier-based chemo-immunotherapy has succeeded in clinical trials and understanding its effect on the tumor microenvironment could facilitate development of strategies to increase efficacy of these regimens further. NC-6300 (epirubicin micelle) demonstrates anti-tumor activity in sarcoma patients, but whether it is combinable with immune checkpoint inhibition is unclear. Here, we tested NC-6300 combined with anti-PD-L1 antibody in mouse models of osteosarcoma and fibrosarcoma. We found that sarcoma responds to NC-6300 in a dose-dependent manner, while anti-PD-L1 efficacy is potentiated even at a dose of NC-6300 less than 10% of the maximum tolerated dose. Furthermore, NC-6300 is more effective than the maximum tolerated dose of doxorubicin in increasing the tumor growth delay induced by anti-PD-L1 antibody. We investigated the mechanism of action of this combination. NC-6300 induces immunogenic cell death and its effect on the efficacy of anti-PD-L1 antibody is dependent on T cells. Also, NC-6300 normalized the tumor microenvironment (i.e., ameliorated pathophysiology towards normal phenotype) as evidenced through increased blood vessel maturity and reduced fibrosis. As a result, the combination with anti-PD-L1 antibody increased the intratumor density and proliferation of T cells. In conclusion, NC-6300 potentiates immune checkpoint inhibition in sarcoma, and normalization of the tumor microenvironment should be investigated when developing nanocarrier-based chemo-immunotherapy regimens.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Animais , Camundongos , Nanomedicina , Inibidores de Checkpoint Imunológico/farmacologia , Imunoterapia , Microambiente Tumoral , Linhagem Celular Tumoral
6.
J Immunol ; 183(7): 4211-9, 2009 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-19734206

RESUMO

We recently demonstrated efficient antitumor immunity against murine tumors using dendritic cells (DCs) activated by recombinant Sendai viruses (rSeVs), and proposed a new concept, "immunostimulatory virotherapy," for cancer immunotherapy. However, there has been little information on the efficacy of this method in preventing metastatic diseases. In this study, we investigated the efficacy of vaccinating DCs activated by fusion gene-deleted nontransmissible rSeV (rSeV/dF) using a murine model of lung metastasis. Bolus and i.v. administration of DCs harboring rSeV/dF-expressing GFP without pulsation of tumor Ag (DC-rSeV/dF-GFP) 2 days before tumor inoculation showed efficient prevention against lung metastasis of c1300 neuroblastoma, but not of RM-9 prostatic cancer. We found that the timing of DC therapy was critical for the inhibition of pulmonary metastasis of RM-9, and that the optimal effect of DCs was seen 28 days before tumor inoculation. Interestingly, the antimetastatic effect was sustained for over 3 mo, even when administered DCs were already cleared from the lung and organs related to the immune system. Although NK cell activity had already declined to baseline at the time of tumor inoculation, Ab-mediated depletion studies revealed that CD4+ cells as well as the presence of, but not the activation of, NK cells were crucial to the prevention of lung metastasis. These results are the first demonstration of efficient inhibition of lung metastasis via bolus administration of virally activated DCs that was sustained and NK/CD4+ cell-dependent, and may suggest a potentially new mechanism of DC-based immunotherapy for advanced malignancies.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/patologia , Células Dendríticas/imunologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/patologia , Neoplasias Pulmonares/prevenção & controle , Neoplasias Pulmonares/secundário , Vírus Sendai/imunologia , Animais , Proliferação de Células , Citotoxicidade Imunológica/genética , Células Dendríticas/virologia , Neoplasias Pulmonares/patologia , Linfonodos/imunologia , Linfonodos/patologia , Masculino , Camundongos , Camundongos Endogâmicos A , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Camundongos Transgênicos , Neuroblastoma/imunologia , Terapia Viral Oncolítica , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/virologia , Vírus Sendai/genética , Fatores de Tempo , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
7.
Mol Ther ; 18(10): 1778-86, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20606645

RESUMO

Glioblastoma multiforme (GM), the most frequent primary malignant brain tumor, is highly invasive due to the expression of proteases, including urokinase-type plasminogen activator (uPA). Here, we show the potential of our new and powerful recombinant Sendai virus (rSeV) showing uPA-specific cell-to-cell fusion activity [rSeV/dMFct14 (uPA2), named "BioKnife"] for GM treatment, an effect that was synergistically enhanced by arming BioKnife with the interferon-ß (IFN-ß) gene. BioKnife killed human GM cell lines efficiently in a uPA-dependent fashion, and this killing was prevented by PA inhibitor-1. Rat gliosarcoma 9L cells expressing both uPA and its functional receptor uPAR (9L-L/R) exhibited high uPA activity on the cellular surface and were highly susceptible to BioKnife. Although parent 9L cells (9L-P) were resistant to BioKnife and to BioKnife expressing IFN-ß (BioKnife-IFNß), cell-cell fusion of 9L-L/R strongly facilitated the expression of IFN-ß, and in turn, IFN-ß significantly accelerated the fusion activity of BioKnife. A similar synergy was seen in a rat orthotopic brain GM model with 9L-L/R in vivo; therefore, these results suggest that BioKnife-IFNß may have significant potential to improve the survival of GM patients in a clinical setting.


Assuntos
Glioblastoma/terapia , Interferon beta/metabolismo , Vírus Oncolíticos/fisiologia , Vírus Sendai/fisiologia , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Animais , Western Blotting , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Ensaio de Imunoadsorção Enzimática , Feminino , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Interferon beta/genética , Imageamento por Ressonância Magnética , Camundongos , Camundongos Nus , Vírus Oncolíticos/genética , Inibidor 1 de Ativador de Plasminogênio/farmacologia , Ratos , Ratos Endogâmicos F344 , Receptores de Ativador de Plasminogênio Tipo Uroquinase/genética , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Vírus Sendai/genética , Ativador de Plasminogênio Tipo Uroquinase/genética
8.
Nat Biomed Eng ; 5(11): 1274-1287, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34635819

RESUMO

Because of the blood-tumour barrier and cross-reactivity with healthy tissues, immune checkpoint blockade therapy against glioblastoma has inadequate efficacy and is associated with a high risk of immune-related adverse events. Here we show that anti-programmed death-ligand 1 antibodies conjugated with multiple poly(ethylene glycol) (PEG) chains functionalized to target glucose transporter 1 (which is overexpressed in brain capillaries) and detaching in the reductive tumour microenvironment augment the potency and safety of checkpoint blockade therapy against glioblastoma. In mice bearing orthotopic glioblastoma tumours, a single dose of glucosylated and multi-PEGylated antibodies reinvigorated antitumour immune responses, induced immunological memory that protected the animals against rechallenge with tumour cells, and suppressed autoimmune responses in the animals' healthy tissues. Drug-delivery formulations leveraging multivalent ligand interactions and the properties of the tumour microenvironment to facilitate the crossing of blood-tumour barriers and increase drug specificity may enhance the efficacy and safety of other antibody-based therapies.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Encéfalo , Glioblastoma/tratamento farmacológico , Camundongos , Polímeros , Microambiente Tumoral
9.
ACS Nano ; 15(3): 5545-5559, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33625824

RESUMO

Effective inhibition of the protein derived from cellular myelocytomatosis oncogene (c-Myc) is one of the most sought-after goals in cancer therapy. While several c-Myc inhibitors have demonstrated therapeutic potential, inhibiting c-Myc has proven challenging, since c-Myc is essential for normal tissues and tumors may present heterogeneous c-Myc levels demanding contrasting therapeutic strategies. Herein, we developed tumor-targeted nanomedicines capable of treating both tumors with high and low c-Myc levels by adjusting their ability to spatiotemporally control drug action. These nanomedicines loaded homologues of the bromodomain and extraterminal (BET) motif inhibitor JQ1 as epigenetic c-Myc inhibitors through pH-cleavable bonds engineered for fast or slow drug release at intratumoral pH. In tumors with high c-Myc expression, the fast-releasing (FR) nanomedicines suppressed tumor growth more effectively than the slow-releasing (SR) ones, whereas, in the low c-Myc tumors, the efficacy of the nanomedicines was the opposite. By studying the tumor distribution and intratumoral activation of the nanomedicines, we found that, despite SR nanomedicines achieved higher accumulation than the FR counterparts in both c-Myc high and low tumors, the antitumor activity profiles corresponded with the availability of activated drugs inside the tumors. These results indicate the potential of engineered nanomedicines for c-Myc inhibition and spur the idea of precision pH-sensitive nanomedicine based on cancer biomarker levels.


Assuntos
Antineoplásicos , Azepinas , Antineoplásicos/farmacologia , Azepinas/farmacologia , Linhagem Celular Tumoral , Concentração de Íons de Hidrogênio , Nanomedicina , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/farmacologia , Transdução de Sinais , Triazóis/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Biomater Sci ; 9(21): 7076-7091, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34397074

RESUMO

Carnitine palmitoyltransferase 1A (CPT1A) is a central player in lipid metabolism, catalyzing the first step to fatty acid oxidation (FAO). Inhibiting CPT1A, especially in the brain, can have several pharmacological benefits, such as in treating obesity and brain cancer. C75-CoA is a strong competitive inhibitor of CPT1A. However, due to its negatively charged nature, it has low cellular permeability. Herein, we report the use of poly-ion complex (PIC) micelles to deliver the specific CPT1A inhibitors (±)-, (+)-, and (-)-C75-CoA into U87MG glioma cells and GT1-7 neurons. PIC micelles were formed through charge-neutralization of the cargo with the cationic side chain of PEG-poly{N-[N'-(2-aminoethyl)-2-aminoethyl]aspartamide} (PEG-PAsp(DET)), forming particles with 55 to 65 nm diameter. Upon short-term incubation with cells, the micelle-encapsulated CPT1A inhibitors resulted in up to 5-fold reduction of ATP synthesis compared to the free drug, without an apparent decline in cell viability. Micelle treatment showed a discernible decrease in 14C-palmitate oxidation into CO2 and acid-soluble metabolites, confirming that the substantial lowering of ATP production has resulted from FAO inhibition. Micelle treatment also diminished IC50 by 2 to 4-fold over the free drug-treated U87MG after long-term incubation. To measure the cellular uptake of these CoA-adduct loaded PIC micelles, we synthesized a fluorescent CoA derivative and prepared Fluor-CoA micelles which showed efficient internalization in the cell lines, both in 2D and 3D culture models, especially in neurons where uptake reached up to 3-fold over the free dye. Our results starkly demonstrate that the PIC micelles are a promising delivery platform for anionic inhibitors of CPT1A in glioma cells and neurons, laying the groundwork for future research or clinical applications.


Assuntos
Metabolismo dos Lipídeos , Micelas , Encéfalo , Coenzima A , Oxirredução , Polietilenoglicóis
11.
Biomaterials ; 267: 120463, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33130321

RESUMO

The crucial balance of stability in blood-circulation and tumor-specific delivery has been suggested as one of the challenges for effective bench-to-bedside translation of nanomedicines (NMs). Herein, we developed a supramolecularly enabled tumor-extracellular (Tex) pH-triggered NM that can maintain the micellar structure with the entrapped-drug during systemic circulation and progressively release drug in the tumor by rightly sensing heterogeneous tumor-pH. Desacetylvinblastine hydrazide (DAVBNH), a derivative of potent anticancer drug vinblastine, was conjugated to an aliphatic ketone-functionalized poly(ethylene glycol)-b-poly(amino acid) copolymer and the hydrolytic stability of the derived hydrazone bond was efficiently tailored by exploiting the compartmentalized structure of polymer micelle. We confirmed an effective and safe therapeutic application of Tex pH-sensitive DAVBNH-loaded micelle (Tex-micelle) in orthotopic glioblastoma (GBM) models, extending median survival to 1.4 times in GBM xenograft and 2.6 times in GBM syngeneic model, compared to that of the free DAVBNH. The work presented here offers novel chemical insights into the molecular design of smart NMs correctly sensing Tex-pH via programmed functionalities. The practical engineering strategy based on a clinically relevant NM platform, and the encouraging therapeutic application of Tex-micelle in GBM, one of the most lethal human cancers, thus suggests the potential clinical translation of this system against other types of common cancers, including GBM.


Assuntos
Glioblastoma , Microambiente Tumoral , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Liberação Controlada de Fármacos , Glioblastoma/tratamento farmacológico , Humanos , Concentração de Íons de Hidrogênio , Micelas , Nanomedicina , Polietilenoglicóis
12.
Adv Mater ; 33(49): e2105254, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34622509

RESUMO

Prevention of metastatic and local-regional recurrence of cancer after surgery remains difficult. Targeting postsurgical premetastatic niche and microresiduals presents an excellent prospective opportunity but is often challenged by poor therapeutic delivery into minimal residual tumors. Here, an enzymatically transformable polymer-based nanotherapeutic approach is presented that exploits matrix metalloproteinase (MMP) overactivation in tumor-associated tissues to guide the codelivery of colchicine (microtubule-disrupting and anti-inflammatory agent) and marimastat (MMP inhibitor). The dePEGylation of polymersomes catalyzed by MMPs not only exposes the guanidine moiety to improve tissue/cell-targeting/retention to increase bioavailability, but also differentially releases marimastat and colchicine to engage their extracellular (MMPs) and intracellular (microtubules) targets of action, respectively. In primary tumors/overt metastases, the vasculature-specific targeting of nanotherapeutics can function synchronously with the enhanced permeability and retention effect to deter malignant progression of metastatic breast cancer. After the surgical removal of large primary tumors, nanotherapeutic agents are localized in the premetastatic niche and at the site of the postsurgical wound, disrupting the premetastatic microenvironment and eliminating microresiduals, which radically reduces metastatic and local-regional recurrence. The findings suggest that nanotherapeutics can safely widen the therapeutic window to resuscitate colchicine and MMP inhibitors for other inflammatory disorders.


Assuntos
Neoplasias da Mama , Nanomedicina , Neoplasias da Mama/patologia , Colchicina/uso terapêutico , Feminino , Humanos , Inibidores de Metaloproteinases de Matriz/uso terapêutico , Estudos Prospectivos , Microambiente Tumoral
13.
J Control Release ; 321: 132-144, 2020 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-32032656

RESUMO

Tumor resistance to tyrosine kinase inhibitors (TKIs) is an inexorable clinical event. The manipulation of adaptive changes in cancer cells while inhibiting the signaling pathways could be an effective strategy for overcoming TKI resistance toward reducing tumor relapse and prolonging survival. Here, we tested this approach by using polymeric nanomedicines delivering the pan-kinase inhibitor staurosporine (STS) to treat renal cell carcinoma (RCC) resistant to the multi-targeted TKI sunitinib. STS blocked the activity of TKI-resistant protein kinases and strongly inhibited adaptive dynamics in RCC cells promoted by MDR1 and GLUT1 to overcome sunitinib resistance. Co-delivery of STS and epirubicin directed to eliminate fast-proliferating cancer cells through the same nanomedicine platform enabled safe and potent in vivo efficacy in mouse models of RCC, overcoming sunitinib resistance and suppressing the development of metastasis. These results indicate our approach as a promising strategy for effectively managing TKI resistance.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Animais , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Camundongos , Nanomedicina , Inibidores de Proteínas Quinases/farmacologia
14.
ACS Nano ; 14(8): 10127-10140, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32806051

RESUMO

Glioblastoma (GBM) is resistant to immune checkpoint inhibition due to its low mutation rate, phosphatase and tensin homologue (PTEN)-deficient immunosuppressive microenvironment, and high fraction of cancer stem-like cells (CSCs). Nanomedicines fostering immunoactivating intratumoral signals could reverse GBM resistance to immune checkpoint inhibitors (ICIs) for promoting curative responses. Here, we applied pH-sensitive epirubicin-loaded micellar nanomedicines, which are under clinical evaluation, to synergize the efficacy of anti-PD1antibodies (aPD1) against PTEN-positive and PTEN-negative orthotopic GBM, the latter with a large subpopulation of CSCs. The combination of epirubicin-loaded micelles (Epi/m) with aPD1 overcame GBM resistance to ICIs by transforming cold GBM into hot tumors with high infiltration of antitumor immune cells through the induction of immunogenic cell death (ICD), elimination of immunosuppressive myeloid-derived suppressor cells (MSDCs), and reduction of PD-L1 expression on tumor cells. Thus, Epi/m plus aPD1 eradicated both PTEN-positive and PTEN-negative orthotopic GBM and provided long-term immune memory effects. Our results indicate the high translatable potential of Epi/m plus aPD1 for the treatment of GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Epirubicina , Glioblastoma/tratamento farmacológico , Humanos , Micelas , Nanomedicina , Células-Tronco Neoplásicas , PTEN Fosfo-Hidrolase , Microambiente Tumoral
15.
Sci Adv ; 6(26): eabb8133, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32637625

RESUMO

A major critical issue in systemically administered nanomedicines is nonspecific clearance by the liver sinusoidal endothelium, causing a substantial decrease in the delivery efficiency of nanomedicines into the target tissues. Here, we addressed this issue by in situ stealth coating of liver sinusoids using linear or two-armed poly(ethylene glycol) (PEG)-conjugated oligo(l-lysine) (OligoLys). PEG-OligoLys selectively attached to liver sinusoids for PEG coating, leaving the endothelium of other tissues uncoated and, thus, accessible to the nanomedicines. Furthermore, OligoLys having a two-armed PEG configuration was ultimately cleared from sinusoidal walls to the bile, while OligoLys with linear PEG persisted in the sinusoidal walls, possibly causing prolonged disturbance of liver physiological functions. Such transient and selective stealth coating of liver sinusoids by two-arm-PEG-OligoLys was effective in preventing the sinusoidal clearance of nonviral and viral gene vectors, representatives of synthetic and nature-derived nanomedicines, respectively, thereby boosting their gene transfection efficiency in the target tissues.


Assuntos
Nanomedicina , Polietilenoglicóis , Fígado
16.
ACS Nano ; 13(11): 12732-12742, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31647640

RESUMO

Despite the rigidity of double-stranded DNA (dsDNA), its packaging is used to construct nonviral gene carriers due to its availability and the importance of its double-helix to elicit transcription. However, there is an increasing demand for more compact-sized carriers to facilitate tissue penetration, which may be easily fulfilled by using the more flexible single-stranded DNA (ssDNA) as an alternative template. Inspired by the adeno-associated virus (AAV) as a prime example of a transcriptionally active ssDNA system, we considered a methodology that can capture unpaired ssDNA within the polyplex micelle system (PM), an assembly of DNA and poly(ethylene glycol)-b-poly(l-lysine) (PEG-PLys). A micellar assembly retaining unpaired ssDNA was prepared by unpairing linearized pDNA with heat and performing polyion complexation on site with PEG-PLys. The PM thus formed had a compact and spherical shape, which was distinguishable from the rod-shaped PM formed from dsDNA, and still retained its ability to activate gene expression. Furthermore, we demonstrated that its capacity to encapsulate DNA was much higher than AAV, thereby potentially allowing the delivery of a larger variety of protein-encoding DNA. These features permit the ssDNA-loaded PM to easily penetrate the size-restricting stromal barrier after systemic application. Further, they can elicit gene expression in tumor cell nests of an intractable pancreatic cancer mouse model to achieve antitumor effects through suicide gene therapy. Thus, single-stranded DNA-packaged PM is appealing as a potential gene vector to tackle intractable diseases, particularly those with target delivery issues due to size-restriction barriers.


Assuntos
DNA de Cadeia Simples/química , Dependovirus/genética , Técnicas de Transferência de Genes , Neoplasias Pancreáticas/terapia , Polímeros/química , Células Estromais/patologia , Animais , Vetores Genéticos/genética , Humanos , Camundongos , Micelas , Tamanho da Partícula
17.
ACS Nano ; 13(2): 2357-2369, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30699292

RESUMO

Therapeutic nanoreactors are of increasing interest in precise cancer therapy, which have been explored to in situ produce therapeutic compounds from inert prodrugs or intrinsic molecules at the target sites. However, engineering a nanoreactor with tumor activable cascade reactions for efficient cooperative cancer therapy remains a great challenge. Herein, we demonstrate a polymersome nanoreactor with tumor acidity-responsive membrane permeability to activate cascade reactions for orchestrated cooperative cancer treatment. The nanoreactors are constructed from responsive polyprodrug polymersomes incorporating ultrasmall iron oxide nanoparticles and glucose oxidase in the membranes and inner aqueous cavities, respectively. The cascade reactions including glucose consumption to generate H2O2, accelerated iron ion release, Fenton reaction between H2O2 and iron ion to produce hydroxyl radicals (•OH), and •OH-triggered rapid release of parent drugs can be specifically activated by the tumor acidity-responsive membrane permeability. During this process, the orchestrated cooperative cancer therapy including starving therapy, chemodynamic therapy, and chemotherapy is realized for high-efficiency tumor suppression by the in situ consumed and produced compounds. The nanoreactor design with tumor-activable cascade reactions represents an insightful paradigm for precise cooperative cancer therapy.


Assuntos
Antineoplásicos/farmacologia , Radical Hidroxila/farmacologia , Nanopartículas/química , Neoplasias/tratamento farmacológico , Polímeros/farmacologia , Pró-Fármacos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Dano ao DNA , Liberação Controlada de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Corantes Fluorescentes/química , Humanos , Concentração de Íons de Hidrogênio , Radical Hidroxila/síntese química , Radical Hidroxila/química , Estrutura Molecular , Neoplasias/patologia , Polímeros/síntese química , Polímeros/química , Pró-Fármacos/síntese química , Pró-Fármacos/química , Espécies Reativas de Oxigênio/análise , Espécies Reativas de Oxigênio/metabolismo
18.
J Control Release ; 295: 268-277, 2019 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-30639386

RESUMO

Cancer stem-like cells (CSCs) treatment is a plausible strategy for enhanced cancer therapy. Here we report a glucose-installed sub-50-nm nanocarrier for the targeted delivery of small interfering RNA (siRNA) to CSCs through selective recognition of the glucose ligand to the glucose transporter 1 (GLUT1) overexpressed on the CSC surface. The siRNA nanocarrier was constructed via a two-step assembling process. First, a glucose-installed poly(ethylene glycol)-block-poly(l-lysine) modified with lipoic acid (LA) at the ω-end (Glu-PEG-PLL-LA) was associated with a single siRNA to form a unimer polyion complex (uPIC). Second, a 20 nm gold nanoparticle (AuNP) was decorated with ~65 uPICs through AuS bonding. The glucose-installed targeted nanoparticles (Glu-NPs) exhibited higher cellular uptake of siRNA payloads in a spheroid breast cancer (MBA-MB-231) cell culture compared with glucose-unconjugated control nanoparticles (MeO-NPs). Notably, the Glu-NPs became more efficiently internalized into the CSC fraction, which was defined by aldehyde dehydrogenase (ALDH) activity assay, than the other fractions, probably due to the higher GLUT1 expression level on the CSCs. The Glu-NPs elicited significantly enhanced gene silencing in a CSC-rich orthotopic MDA-MB-231 tumor tissue following systemic administration to tumor-bearing mice. Ultimately, the repeated administrations of polo-like kinase 1 (PLK1) siRNA-loaded Glu-NPs significantly suppressed the growth of orthotopic MDA-MB-231 tumors. These results demonstrate that Glu-NP is a promising nanocarrier design for CSC-targeted cancer treatment.


Assuntos
Neoplasias da Mama/terapia , Transportador de Glucose Tipo 1/genética , Ouro/química , Nanopartículas Metálicas/química , RNA Interferente Pequeno/administração & dosagem , Terapêutica com RNAi , Animais , Neoplasias da Mama/genética , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Feminino , Regulação Neoplásica da Expressão Gênica , Glucose/química , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Células-Tronco Neoplásicas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/uso terapêutico , Quinase 1 Polo-Like
19.
Nat Commun ; 10(1): 1894, 2019 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-31019193

RESUMO

Stabilisation of fragile oligonucleotides, typically small interfering RNA (siRNA), is one of the most critical issues for oligonucleotide therapeutics. Many previous studies encapsulated oligonucleotides into ~100-nm nanoparticles. However, such nanoparticles inevitably accumulate in liver and spleen. Further, some intractable cancers, e.g., tumours in pancreas and brain, have inherent barrier characteristics preventing the penetration of such nanoparticles into tumour microenvironments. Herein, we report an alternative approach to cancer-targeted oligonucleotide delivery using a Y-shaped block catiomer (YBC) with precisely regulated chain length. Notably, the number of positive charges in YBC is adjusted to match that of negative charges in each oligonucleotide strand (i.e., 20). The YBC rendezvouses with a single oligonucleotide in the bloodstream to generate a dynamic ion-pair, termed unit polyion complex (uPIC). Owing to both significant longevity in the bloodstream and appreciably small size (~18 nm), the uPIC efficiently delivers oligonucleotides into pancreatic tumour and brain tumour models, exerting significant antitumour activity.


Assuntos
Antineoplásicos/metabolismo , Neoplasias Encefálicas/terapia , Regulação Neoplásica da Expressão Gênica , Nanoestruturas/química , Oligonucleotídeos/genética , Neoplasias Pancreáticas/terapia , RNA Interferente Pequeno/genética , Animais , Antineoplásicos/síntese química , Antineoplásicos/farmacocinética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/mortalidade , Carbocianinas/química , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Portadores de Fármacos/síntese química , Portadores de Fármacos/farmacocinética , Corantes Fluorescentes/química , Humanos , Injeções Intravenosas , Masculino , Camundongos , Nanoestruturas/administração & dosagem , Oligonucleotídeos/síntese química , Oligonucleotídeos/metabolismo , Oligonucleotídeos/farmacocinética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/mortalidade , Polietilenoglicóis/química , Polilisina/química , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , RNA Longo não Codificante/antagonistas & inibidores , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Interferente Pequeno/síntese química , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/farmacocinética , Eletricidade Estática , Análise de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto , Quinase 1 Polo-Like
20.
Cancer Sci ; 99(11): 2315-26, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18957055

RESUMO

The recent clinical application of granulocyte macrophage colony-stimulating factor (GM-CSF)-transduced autologous tumor vaccines revealed substantial antitumor activity and valuable clinical results. However, for these vaccines to be optimally effective, the antitumor efficacies must be improved. Recently, Sendai virus (SeV) vectors, which are cytoplasmic RNA vectors, have emerged as safe vectors with high gene transduction. In the current study, the in vivo therapeutic antitumor efficacies of irradiated GM-CSF-transduced mouse renal cell carcinoma (RENCA) vaccine cells mediated by either fusion gene-deleted non-transmissible SeV encoding mouse GM-CSF (SeV/dF/G) or adenovirus (E1, E3 deleted serotype 5 adenovirus) encoding mouse GM-CSF (AdV/G) (respectively described as irRC/SeV/GM or irRC/AdV/GM) were compared in RENCA-bearing mice. The results showed that the antitumor effect was equivalent between irRC/SeV/GM and irRC/AdV/GM cells, even though the former produced less GM-CSF in vitro. The cell numbers of activated (CD80(+), CD86(+), CD80( (+) )CD86(+)) dendritic cells in lymph nodes from mice treated with irRC/AdV/GM or irRC/SeV/GM cells were increased significantly compared with those of mice treated with the respective controls, at both the earlier and later phases. In an in vitro cytotoxicity assay, splenocytes harvested from mice treated with both irRC/SeV/GM and irRC/AdV/GM cells showed tumor-specific responses against RENCA cells. The restimulated splenocytes harvested from mice treated with irRC/SeV/GM or irRC/AdV/GM cells produced significantly higher levels of interleukin-2, interleukin-4, and interferon-gamma compared with their respective controls (P < 0.05). Furthermore, vaccination with irRC/AdV/GM or irRC/SeV/GM cells induced significantly enhanced recruitment of the cytolytic effectors of CD107a(+)CD8(+) T cells and CD107a(+) natural killer cells into tumors compared with those induced by their respective controls (P < 0.05). Taken together, our results suggest that the SeV/dF/G vector is a potential candidate for the production of effective autologous GM-CSF-transduced tumor vaccines in clinical cancer immune gene therapy.


Assuntos
Vacinas Anticâncer/uso terapêutico , Carcinoma de Células Renais/terapia , Vetores Genéticos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Neoplasias Renais/terapia , Vírus Sendai/genética , Adenoviridae/genética , Adenoviridae/imunologia , Animais , Vacinas Anticâncer/imunologia , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/imunologia , Linhagem Celular Tumoral , Feminino , Terapia Genética/métodos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Humanos , Neoplasias Renais/genética , Neoplasias Renais/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Transdução Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA