Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Cancer ; 125(16): 2732-2746, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31017664

RESUMO

Colorectal cancer (CRC) represents a major public health problem as the second leading cause of cancer-related mortality in the United States. Of an estimated 140,000 newly diagnosed CRC cases in 2018, roughly one-third of these patients will have a primary tumor located in the distal large bowel or rectum. The current standard-of-care approach includes curative-intent surgery, often after preoperative (neoadjuvant) radiotherapy (RT), to increase rates of tumor down-staging, clinical and pathologic response, as well as improving surgical resection quality. However, despite advancements in surgical techniques, as well as sharpened precision of dosimetry offered by contemporary RT delivery platforms, the oncology community continues to face challenges related to disease relapse. Ongoing investigations are aimed at testing novel radiosensitizing agents and treatments that might exploit the systemic antitumor effects of RT using immunotherapies. If successful, these treatments may usher in a new curative paradigm for rectal cancers, such that surgical interventions may be avoided. Importantly, this disease offers an opportunity to correlate matched paired biopsies, radiographic response, and molecular mechanisms of treatment sensitivity and resistance with clinical outcomes. Herein, the authors highlight the available evidence from preclinical models and early-phase studies, with an emphasis on promising developmental therapeutics undergoing prospective validation in larger scale clinical trials. This review by the National Cancer Institute's Radiation Research Program Colorectal Cancer Working Group provides an updated, comprehensive examination of the continuously evolving state of the science regarding radiosensitizer drug development in the curative treatment of CRC.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/radioterapia , Radiossensibilizantes/uso terapêutico , Antineoplásicos Imunológicos/farmacologia , Antígeno B7-H1/antagonistas & inibidores , Produtos Biológicos , Proteínas de Choque Térmico HSP90/metabolismo , Herpesvirus Humano 1 , Humanos , Imunoterapia/métodos , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Terapia de Alvo Molecular , National Cancer Institute (U.S.) , Proteína Quinase C/antagonistas & inibidores , Nucleosídeos de Pirimidina/farmacologia , Radiossensibilizantes/farmacologia , Estados Unidos
2.
Cancer Chemother Pharmacol ; 92(2): 151-155, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37369852

RESUMO

BACKGROUND: Rectal carcinomas are tumors that arise from the last 12 cm of the large intestine closest to the anus. They generally have a modest prognosis exacerbated by a high local recurrence rate if radiosensitizing chemotherapy is not given during radiotherapy. This case report discusses the clinical trial treatment of a patient with rectal adenocarcinoma by a new ropidoxuridine-capecitabine-radiotherapy combination. This case report is novel due to the patient's participation in an accelerated titration phase I clinical trial and the resultant rare adverse event of treatment-related sigmoid typhlitis. CASE PRESENTATION: The patient was an 82-year-old female who noticed hematochezia and change in stool caliber over a period of 3 months. A rectal mass was identified by biopsy as a microsatellite stable adenocarcinoma. A planned total neoadjuvant treatment involved eight cycles of leucovorin calcium (folinic acid)-fluorouracil-oxaliplatin (mFOLFOX6) chemotherapy, followed by a clinical trial combination of ropidoxuridine-capecitabine-radiotherapy, prior to definitive surgery. The patient began daily intensity modulated pelvic radiotherapy with concurrent twice-daily oral ropidoxuridine and twice-daily oral capecitabine to be given over 6 weeks. After 14 days of ropidoxuridine-capecitabine-radiotherapy, the patient developed sigmoid typhlitis requiring a 10-day hospitalization and 14-day disruption of treatment. The patient died 27 days after the start of ropidoxuridine-capecitabine-radiotherapy. This adverse event was listed as a definite attribution to the ropidoxuridine-capecitabine treatment; pharmacokinetic and pharmacodynamic data showed low ropidoxuridine metabolite DNA incorporation and high capecitabine metabolite concentration. The accelerated titration phase I clinical trial has been subsequently closed to accrual (NCT04406857). CONCLUSIONS: We believe this case report demonstrates the decision-making process for terminating a phase I accelerated titration designed clinical trial. The report also presents the rare complication of sigmoid typhlitis as a treatment-attributed adverse event. In this case, a ropidoxuridine-capecitabine combination was used as an investigational radiosensitizing treatment now with a narrower future clinical development pathway.


Assuntos
Adenocarcinoma , Neoplasias Retais , Tiflite , Feminino , Humanos , Idoso de 80 Anos ou mais , Capecitabina , Fluoruracila , Tiflite/tratamento farmacológico , Tiflite/etiologia , Tiflite/patologia , Neoplasias Retais/tratamento farmacológico , Neoplasias Retais/radioterapia , Terapia Neoadjuvante , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Leucovorina , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/radioterapia , Estadiamento de Neoplasias
3.
Clin Cancer Res ; 15(6): 1853-9, 2009 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-19240165

RESUMO

DNA damage processing by mismatch repair (MMR) and/or base excision repair (BER) can determine the therapeutic index following treatment of human cancers using radiation therapy and several classes of chemotherapy drugs. Over the last decade, basic and translational cancer research in DNA repair has led to an increased understanding of how these two DNA repair pathways can modify cytotoxicity to chemotherapy and/or ionizing radiation treatments in both normal and malignant tissues. This Molecular Pathways article provides an overview of the current understanding of mechanisms involved in MMR and BER damage processing, including insights into possible coordination of these two DNA repair pathways after chemotherapy and/or ionizing radiation damage. It also introduces principles of systems biology that have been applied to better understand the complexities and coordination of MMR and BER in processing these DNA damages. Finally, it highlights novel therapeutic approaches to target resistant (or DNA damage tolerant) human cancers using chemical and molecular modifiers of chemotherapy and/or ionizing radiation including poly (ADP-ribose) polymerase inhibitors, methoxyamine and iododeoxyuridine (and the prodrug, 5-iodo-2-pyrimidinone-2'-deoxyribose).


Assuntos
Dano ao DNA , Reparo de Erro de Pareamento de DNA , Reparo do DNA , Neoplasias/genética , Resistencia a Medicamentos Antineoplásicos , Genes BRCA1 , Genes BRCA2 , Humanos , Hidroxilaminas/uso terapêutico , Idoxuridina/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/radioterapia , Poli(ADP-Ribose) Polimerase-1 , Inibidores de Poli(ADP-Ribose) Polimerases
4.
Front Oncol ; 10: 586232, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33335855

RESUMO

PURPOSE: To reduce patient and procedure identification errors by human interactions in radiotherapy delivery and surgery, a Biometric Automated Patient and Procedure Identification System (BAPPIS) was developed. BAPPIS is a patient identification and treatment procedure verification system using fingerprints. METHODS: The system was developed using C++, the Microsoft Foundation Class Library, the Oracle database system, and a fingerprint scanner. To register a patient, the BAPPIS system requires three steps: capturing a photograph using a web camera for photo identification, taking at least two fingerprints, and recording other specific patient information including name, date of birth, allergies, etc. To identify a patient, the BAPPIS reads a fingerprint, identifies the patient, verifies with a second fingerprint to confirm when multiple patients have same fingerprint features, and connects to the patient's record in electronic medical record (EMR) systems. To validate the system, 143 and 21 patients ranging from 36 to 98 years of ages were recruited from radiotherapy and breast surgery, respectively. The registration process for surgery patients includes an additional module, which has a 3D patient model. A surgeon could mark 'O' on the model and save a snap shot of patient in the preparation room. In the surgery room, a webcam displayed the patient's real-time image next to the 3D model. This may prevent a possible surgical mistake. RESULTS: 1,271 (96.9%) of 1,311 fingerprints were verified by BAPPIS using patients' 2nd fingerprints from 143 patients as the system designed. A false positive recognition was not reported. The 96.9% completion ratio is because the operator did not verify with another fingerprint after identifying the first fingerprint. The reason may be due to lack of training at the beginning of the study. CONCLUSION: We successfully demonstrated the use of BAPPIS to correctly identify and recall patient's record in EMR. BAPPIS may significantly reduce errors by limiting the number of non-automated steps.

5.
Semin Oncol ; 36(2 Suppl 1): S42-51, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19393835

RESUMO

Radiation therapy and many of the commonly used cancer chemotherapeutic drugs target DNA for cytotoxicity. Indeed, the subsequent DNA damage response (DDR) to these cancer treatments in both malignant and normal cells/tissues determines the therapeutic index (TI) of the treatment. The DDR is a complex set of cell processes involving multiple DNA repair, cell cycle regulation, and cell death/survival pathways (or networks) with both damage specificity and coordination of the DDR to different types of DNA damage. Over the last decade, significant progress has been made in elucidating these complex cellular and molecular networks involved in the DDR in human tumor and normal tissues. Based on what has been learned about these processes using experimental in vitro and in vivo models, DDR and DNA pathways are now potential targets for cancer therapy. This article presents an overview of our current understanding of the DDR, including the key DNA repair pathways involved in determining the cytotoxicity to several classes of chemotherapy drugs (CT) as well as ionizing radiation (IR). Since many different types of human cancers can arise from genetic or epigenetic changes in the DDR and DNA repair pathways, this article also covers recent developments in cancer therapeutics that attempt to target these specific tumor-related DDR/DNA repair defects as monotherapy or, more commonly, when combined with conventional cancer treatments.


Assuntos
Antineoplásicos/farmacologia , Reparo do DNA , Neoplasias/tratamento farmacológico , Neoplasias/genética , Ensaios Clínicos como Assunto , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/efeitos da radiação , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/fisiologia , Reparo do DNA/efeitos da radiação , Desenho de Fármacos , Humanos
6.
Cancer Res ; 67(13): 6286-92, 2007 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-17616687

RESUMO

Human DNA mismatch repair (MMR) is involved in the response to certain chemotherapy drugs, including 6-thioguanine (6-TG). Consistently, MMR-deficient human tumor cells show resistance to 6-TG damage as manifested by a reduced G(2)-M arrest and decreased apoptosis. In this study, we investigate the role of the BRCA1 protein in modulating a 6-TG-induced MMR damage response, using an isogenic human breast cancer cell line model, including a BRCA1 mutated cell line (HCC1937) and its transfectant with a wild-type BRCA1 cDNA. The MMR proteins MSH2, MSH6, MLH1, and PMS2 are similarly detected in both cell lines. BRCA1-mutant cells are more resistant to 6-TG than BRCA1-positive cells in a clonogenic survival assay and show reduced apoptosis. Additionally, the mutated BRCA1 results in an almost complete loss of a G(2)-M cell cycle checkpoint response induced by 6-TG. Transfection of single specific small interfering RNAs (siRNA) against MSH2, MLH1, ATR, and Chk1 in BRCA1-positive cells markedly reduces the BRCA1-dependent G(2)-M checkpoint response. Interestingly, ATR and Chk1 siRNA transfection in BRCA1-positive cells shows similar levels of 6-TG cytotoxicity as the control transfectant, whereas MSH2 and MLH1 siRNA transfectants show 6-TG resistance as expected. DNA MMR processing, as measured by the number of 6-TG-induced DNA strand breaks using an alkaline comet assay (+/-z-VAD-fmk cotreatment) and by levels of iododeoxyuridine-DNA incorporation, is independent of BRCA1, suggesting the involvement of BRCA1 in the G(2)-M checkpoint response to 6-TG but not in the subsequent excision processing of 6-TG mispairs by MMR.


Assuntos
Proteína BRCA1/biossíntese , Proteína BRCA1/fisiologia , Pareamento Incorreto de Bases , Reparo de Erro de Pareamento de DNA , Tioguanina/farmacologia , Ciclo Celular , Divisão Celular , Linhagem Celular Tumoral , Ensaio Cometa , Fase G2 , Humanos , Microscopia Confocal , Mitose , Mutação , Fosforilação , Transfecção
7.
Clin Cancer Res ; 25(20): 6035-6043, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31337643

RESUMO

PURPOSE: Iododeoxyuridine (IUdR) is a potent radiosensitizer; however, its clinical utility is limited by dose-limiting systemic toxicities and the need for prolonged continuous infusion. 5-Iodo-2-pyrimidinone-2'-deoxyribose (IPdR) is an oral prodrug of IUdR that, compared with IUdR, is easier to administer and less toxic, with a more favorable therapeutic index in preclinical studies. Here, we report the clinical and pharmacologic results of a first-in-human phase I dose escalation study of IPdR + concurrent radiation therapy (RT) in patients with advanced metastatic gastrointestinal (GI) cancers. PATIENTS AND METHODS: Adult patients with metastatic GI cancers referred for palliative RT to the chest, abdomen, or pelvis were eligible for study. Patients received IPdR orally once every day × 28 days beginning 7 days before the initiation of RT (37.5 Gy in 2.5 Gy × 15 fractions). A 2-part dose escalation scheme was used, pharmacokinetic studies were performed at multiple time points, and all patients were assessed for toxicity and response to Day 56. RESULTS: Nineteen patients were entered on study. Dose-limiting toxicity was encountered at 1,800 mg every day, and the recommended phase II dose is 1,200 mg every day. Pharmacokinetic analyses demonstrated achievable and sustainable levels of plasma IUdR ≥1 µmol/L (levels previously shown to mediate radiosensitization). Two complete, 3 partial, and 9 stable responses were achieved in target lesions. CONCLUSIONS: Administration of IPdR orally every day × 28 days with RT is feasible and tolerable at doses that produce plasma IUdR levels ≥1 µmol/L. These results support the investigation of IPdR + RT in phase II studies.


Assuntos
Quimiorradioterapia/métodos , Neoplasias Gastrointestinais/terapia , Idoxuridina/farmacocinética , Nucleosídeos de Pirimidina/administração & dosagem , Radiossensibilizantes/administração & dosagem , Administração Oral , Adulto , Idoso , Idoso de 80 Anos ou mais , Fracionamento da Dose de Radiação , Estudos de Viabilidade , Feminino , Neoplasias Gastrointestinais/patologia , Humanos , Idoxuridina/administração & dosagem , Idoxuridina/toxicidade , Masculino , Dose Máxima Tolerável , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Pró-Fármacos/administração & dosagem , Pró-Fármacos/farmacocinética , Pró-Fármacos/toxicidade , Nucleosídeos de Pirimidina/farmacocinética , Nucleosídeos de Pirimidina/toxicidade , Radiossensibilizantes/farmacocinética , Radiossensibilizantes/toxicidade , Resultado do Tratamento
8.
Cancer Chemother Pharmacol ; 61(2): 323-34, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17562042

RESUMO

PURPOSE: A toxicology and pharmacokinetic study of orally administered (po) IPdR (5-3iodo-2-pyrimidinone-2'deoxyribose, NSC-726188) was performed in Fischer-344 rats using a once daily (qd) x 28 days dosing schedule as proposed for an initial phase I clinical trial of IPdR as a radiosensitizer. METHODS: For the toxicology assessment, 80 male and female rats (10/sex/dosage group) were randomly assigned to groups receiving either 0, 0.2, 1.0 or 2.0 g kg(-1)day(-1) of po IPdR x 28 days and one-half were observed to day 57 (recovery group). Animals were monitored for clinical signs during and following treatment with full necropsy of one-half of each dosage group at day 29 and 57. For the plasma pharmacokinetic assessment, 40 rats (10/sex/dosage group) were randomly assigned to groups receiving either 0.2 or 1.0 g kg(-1)day(-1) of po IPdR x 28 days with multiple blood samplings on days 1 and 28 and single blood sampling on days 8 and 15. RESULTS: No drug-related deaths occurred. Higher IPdR doses resulted in transient weight loss and transient decreased hemoglobins but had no effect on white cells or platelets. Complete serum chemistry evaluation showed transient mild decreases in total protein, alkaline phosphatase, and serum globulin. Necropsy evaluation at day 29 showed minimal to mild histopathologic changes in bone marrow, lymph nodes and liver; all reversed by day 59. There were no sex-dependent differences in plasma pharmacokinetics of IPdR noted and the absorption and elimination kinetics of IPdR were found to be linear over the dose range studied. CONCLUSIONS: A once-daily dosing schedule of po IPdR for 28 days with doses up to 2.0 g kg(-1)day(-1) appeared to be well tolerated in Fischer-344 rats. Drug-related weight loss and microscopic changes in bone marrow, lymph nodes and liver were observed. These changes were all reversed by day 57. IPdR disposition was linear over the dose range used. However, based on day 28 kinetics it appears that IPdR elimination is enhanced following repeated administration. These toxicology and pharmacokinetic data were used when considering the design of our initial phase I trial of po IPdR as a clinical radiosensitizer.


Assuntos
Nucleosídeos de Pirimidina/farmacocinética , Nucleosídeos de Pirimidina/toxicidade , Radiossensibilizantes/farmacocinética , Radiossensibilizantes/toxicidade , Animais , Antimetabólitos/farmacocinética , Antimetabólitos/toxicidade , Área Sob a Curva , Disponibilidade Biológica , Contagem de Células Sanguíneas , Ensaios Clínicos Fase I como Assunto , Feminino , Meia-Vida , Idoxuridina/farmacocinética , Idoxuridina/toxicidade , Absorção Intestinal , Masculino , Ratos , Ratos Endogâmicos F344
9.
Technol Cancer Res Treat ; 7(3): 227-33, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18473494

RESUMO

The purpose of this study was to investigate whether helical tomotherapy would better dose-limit growing vertebral ring apophyses during craniospinal radiation as compared to conventional techniques. Four pediatric patients with M0 medulloblastoma received tomotherapy craniospinal radiation (23.4 Gy, 1.8 Gy/fx) by continuous helical delivery of 6 MV photons. Weekly blood counts were monitored. For comparison, conventional craniospinal radiation plans were generated. To assist in tomotherapy planning, a cross-sectional growth study of 52 children and young adults was completed to evaluate spine growth and maturation. Vertebral ring apophyses first fused along the posterolateral body-pedicle synostosis, proceeding circumferentially toward the anterior vertebral body such that the cervical and lumbar vertebrae fused early and mid-thoracic vertebrae fused late. For the four pediatric patients, tomotherapy resulted between 2% and 14% vertebral volume exceeding 23 Gy. Conventional craniospinal radiation predicted between 33% and 44% exceeding 23 Gy. Cumulative body radiation doses exceeding 4 Gy were between 50% and 57% for tomotherapy and between 25% and 37% for conventional craniospinal radiation. Tomotherapy radiation reduced neutrophil, platelet, and erythrocyte hemoglobin levels during treatment. Tomotherapy provides improved dose avoidance to growing vertebrae as compared to conventional craniospinal radiation. However, the long-term effects of tomotherapy dose avoidance on spine growth and large volume low dose radiation in children are not yet known.


Assuntos
Neoplasias Cerebelares/radioterapia , Irradiação Craniana/métodos , Meduloblastoma/radioterapia , Tomografia Computadorizada Espiral , Tomografia Computadorizada por Raios X , Adolescente , Criança , Feminino , Humanos , Masculino , Planejamento da Radioterapia Assistida por Computador , Medula Espinal/efeitos da radiação , Coluna Vertebral/efeitos da radiação
10.
Clin Cancer Res ; 13(4): 1315-21, 2007 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-17317843

RESUMO

PURPOSE: We investigate the roles of DNA mismatch repair (MMR) and p53 in mediating the induction of autophagy in human tumor cells after exposure to 6-thioguanine (6-TG), a chemotherapy drug recognized by MMR. We also examine how activation of autophagy affects apoptosis (type I cell death) after MMR processing of 6-TG. EXPERIMENTAL DESIGN: Using isogenic pairs of MLH1(-)/MLH1(+) human colorectal cancer cells (HCT116) and MSH2(-)/MSH2(+) human endometrial cancer cells (HEC59), we initially measure activation of autophagy for up to 3 days after 6-TG treatment using LC3, a specific marker of autophagy. We then assess the role of p53 in autophagic signaling of 6-TG MMR processing using both pifithrin-alpha cotreatment to chemically inhibit p53 transcription and small hairpin RNA inhibition of p53 expression. Finally, we use Atg5 small hairpin RNA inhibition of autophagy to assess the effect on apoptosis after MMR processing of 6-TG. RESULTS: We find that MMR is required for mediating autophagy in response to 6-TG treatment in these human tumor cells. We also show that p53 plays an essential role in signaling from MMR to the autophagic pathway. Finally, our results indicate that 6-TG-induced autophagy inhibits apoptosis after MMR processing of 6-TG. CONCLUSIONS: These data suggest a novel function of MMR in mediating autophagy after a chemical (6-TG) DNA mismatch damage through p53 activation. The resulting autophagy inhibits apoptosis after MMR processing of 6-TG.


Assuntos
Autofagia/efeitos dos fármacos , Autofagia/genética , Reparo de Erro de Pareamento de DNA , Tioguanina/farmacologia , Proteína Supressora de Tumor p53/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Proteínas Adaptadoras de Transdução de Sinal/genética , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/patologia , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/fisiologia , Genes p53 , Células HCT116 , Humanos , Proteína 1 Homóloga a MutL , Proteínas Nucleares/biossíntese , Proteínas Nucleares/genética , Proteína Supressora de Tumor p53/biossíntese , Proteína Supressora de Tumor p53/genética
11.
Cancer Res ; 66(15): 7686-93, 2006 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-16885370

RESUMO

The base excision repair protein MED1 (also known as MBD4), an interactor with the mismatch repair protein MLH1, has a central role in the maintenance of genomic stability with dual functions in DNA damage response and repair. MED1 acts as a thymine and uracil DNA N-glycosylase on T:G and U:G mismatches that occur at cytosine-phosphate-guanine (CpG) methylation sites due to spontaneous deamination of 5-methylcytosine and cytosine, respectively. To elucidate the mechanisms that underlie sequence discrimination by MED1, we did single-turnover kinetics with the isolated, recombinant glycosylase domain of MED1. Quantification of MED1 substrate hierarchy confirmed MED1 preference for mismatches within a CpG context and showed preference for hemimethylated base mismatches. Furthermore, the k(st) values obtained with the uracil analogues 5-fluorouracil and 5-iodouracil were over 20- to 30-fold higher than those obtained with uracil, indicating substantially higher affinity for halogenated bases. A 5-iodouracil precursor is the halogenated nucleotide 5-iododeoxyuridine (5IdU), a cytotoxic and radiosensitizing agent. Cultures of mouse embryo fibroblasts (MEF) with different Med1 genotype derived from mice with targeted inactivation of the gene were evaluated for sensitivity to 5IdU. The results revealed that Med1-null MEFs are more sensitive to 5IdU than wild-type MEFs in both 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and colony formation assays. Furthermore, high-performance liquid chromatography analyses revealed that Med1-null cells exhibit increased levels of 5IdU in their DNA due to increased incorporation or reduced removal. These findings establish MED1 as a bona fide repair activity for the removal of halogenated bases and indicate that MED1 may play a significant role in 5IdU cytotoxicity.


Assuntos
Endodesoxirribonucleases/metabolismo , Idoxuridina/metabolismo , Idoxuridina/farmacologia , Pirimidinas/metabolismo , Pirimidinas/farmacologia , Animais , Pareamento Incorreto de Bases , Linhagem Celular , Ilhas de CpG , Embrião de Mamíferos , Endodesoxirribonucleases/genética , Inativação Gênica , Humanos , Camundongos , Especificidade por Substrato
12.
Cancer Res ; 66(1): 490-8, 2006 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-16397265

RESUMO

5-Iododeoxyuridine (IUdR) and caffeine are recognized as potential radiosensitizers with different mechanisms of interaction with ionizing radiation (IR). To assess the interaction of these two types of radiosensitizers, we compared treatment responses to these drugs alone and in combination with IR in two p53-proficient and p53-deficient pairs of human colon cancer cell lines (HCT116 versus HCT116 p53-/- and RKO versus RKO E6). Based on clonogenic survival, the three single agents (IR, IUdR, and caffeine) as well as IUdR or caffeine combined with IR are less or equally effective in p53-deficient human tumor cells compared with p53-proficient tumor cells. However, using both radiosensitizers, a significantly greater radiosensitization was found in p53-deficient human tumor cells. To better understand the interaction of these two radiosensitizers, additional studies on DNA repair and cell cycle regulation were done. We found that caffeine enhanced IUdR-DNA incorporation and IUdR-mediated radiosensitization by partially inhibiting repair (removal) of IUdR in DNA. The repair of IR-induced DNA double-strand breaks was also inhibited by caffeine. However, these effects of caffeine on IUdR-mediated radiosensitization were not found in p53-proficient cells. Cell cycle analyses also showed a greater abrogation of IR-induced S- and G2-phase arrests by caffeine in p53-deficient cells, particularly when combined with IUdR. Collectively, these data provide the mechanistic bases for combining these two radiosensitizers to enhance tumor cytotoxicity. This differential dual mode of radiosensitization by combining IUdR and caffeine-like drugs (e.g., UCN-01) in p53-deficient human tumors may lead to a greater therapeutic gain.


Assuntos
Cafeína/farmacologia , Idoxuridina/farmacologia , Radiossensibilizantes/farmacologia , Pareamento Incorreto de Bases , Reparo do DNA , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Células HCT116 , Humanos , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/fisiologia
13.
Front Oncol ; 13: 1179316, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37025589
14.
Adv Radiat Oncol ; 3(3): 245-251, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30202794

RESUMO

PURPOSE: Single-fraction radiation surgery for spine metastases is highly effective. However, a high rate (20-39%) of vertebral body fracture (VBF) has been associated with large, single-fraction doses. We report our experience using multifraction stereotactic body radiation therapy (SBRT). METHODS AND MATERIALS: All patients who were treated with multifraction SBRT for spine metastases at our institution between 2009 and 2017 were retrospectively analyzed. SBRT was delivered in 2 to 5 fractions using the Cyberknife System (Accuray, Sunnyvale, CA). Patients were followed clinically and with magnetic resonance imaging every 3 to 6 months. Local control, complications (including VBF), and overall survival were evaluated. Patient, disease, and treatment variables were analyzed for a statistical association with outcomes. RESULTS: A total of 83 patients were treated to 98 spine lesions with a median follow-up of 7.6 months. Histologies included non-small cell lung cancer (NSCLC; 24%), renal cell carcinoma (RCC; 18%), and breast cancer (12%). Surgery or vertebroplasty were performed before SBRT in 21% of cases. Patients received a median SBRT dose of 24 Gy in a median of 3 fractions. Local control was 93% at 6 months and 84% at 1 year. Higher prescribed dose, higher biologic effective dose, higher minimum dose to 90% of the planning target volume, tumor histology, and smaller tumor volume predicted improved local control. The cumulative dose was 23 Gy versus 26 Gy for patients with and without failure (P = .02), higher biologic effective dose 39 Gy versus 46 Gy, (P = .01), and higher minimum dose to 90% of the planning target volume 23 Gy versus 26 Gy (P = .03). VBF occurred in 4.2% of all cases and 5.3% of those without surgery or vertebroplasty prior to SBRT. Only preexisting VBF predicted risk of post-SBRT VBF (P < .01). CONCLUSIONS: Multifraction SBRT results in a high local control rate for metastatic spinal disease with a low VBF rate, which suggests a favorable therapeutic ratio compared with single-fraction SBRT.

15.
Int J Radiat Oncol Biol Phys ; 69(4): 1254-61, 2007 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-17967315

RESUMO

PURPOSE: 5-iodo-2-pyrimidinone-2'-deoxyribose (IPdR) is a novel orally administered (p.o.) prodrug of 5-iododeoxyuridine. Because p.o. IPdR is being considered for clinical testing as a radiosensitizer in patients with high-grade gliomas, we performed this in vivo study of IPdR-mediated cytotoxicity and radiosensitization in a human glioblastoma xenograft model, U87. METHODS AND MATERIALS: Groups of 8 or 9 athymic male nude mice (6-8 weeks old) were implanted with s.c. U87 xenograft tumors (4 x 10(6) cells) and then randomized to 10 treatment groups receiving increasing doses of p.o. IPdR (0, 100, 250, 500, and 1000 mg/kg/d) administered once daily (q.d.) x 14 days with or without radiotherapy (RT) (0 or 2 Gy/d x 4 days) on days 11-14 of IPdR treatment. Systemic toxicity was determined by body weight measurements during and after IPdR treatment. Tumor response was assessed by changes in tumor volumes. RESULTS: IPdR alone at doses of > or =500 mg/kg/d resulted in moderate inhibition of tumor growth. The combination of IPdR plus RT resulted in a significant IPdR dose-dependent tumor growth delay, with the maximum radiosensitization using > or =500 mg/kg/d. IPdR doses of 500 and 1000 mg/kg/d resulted in transient 5-15% body weight loss during treatment. CONCLUSIONS: In U87 human glioblastoma s.c. xenografts, p.o. IPdR given q.d. x 14 days and RT given 2 Gy/d x 4 days (days 11-14 of IPdR treatment) results in a significant tumor growth delay in an IPdR dose-dependent pattern. The use of p.o. IPdR plus RT holds promise for Phase I/II testing in patients with high-grade gliomas.


Assuntos
Neoplasias Encefálicas/radioterapia , Glioblastoma/radioterapia , Pró-Fármacos/uso terapêutico , Nucleosídeos de Pirimidina/uso terapêutico , Radiossensibilizantes/uso terapêutico , Animais , Peso Corporal/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Humanos , Masculino , Camundongos , Camundongos Nus , Transplante de Neoplasias , Distribuição Aleatória , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/efeitos da radiação , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
16.
Cancer Res ; 65(10): 4362-7, 2005 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-15899828

RESUMO

In this study, we show that CK2 (casein kinase II, CKII) participates in apoptotic responses following ionizing radiation (IR). Using HeLa human cervical carcinoma cells, we find that transfection of small interfering RNA against the CK2 alpha and/or alpha' catalytic subunits results in enhanced apoptosis following IR damage as measured by flow cytometry techniques, compared with a control small interfering RNA. Within 2 to 6 hours of IR, CK2 alpha partially localizes to perinuclear structures, whereas a marked nuclear localization of alpha' occurs. Treatment with a pan-caspase inhibitor or transfection of ARC (apoptosis repressor with caspase recruitment domain) suppresses the apoptotic response to IR in the CK2-reduced cells, indicating involvement of caspases. Additionally, we find that CK2 alpha and/or alpha' reduction affects cell cycle progression independent of IR damage in this human cell line. However, the G2-M checkpoint following IR is not affected in CK2 alpha- and/or alpha'-reduced cells. Thus, our data suggest that CK2 participates in inhibition of apoptosis and negatively regulates caspase activity following IR damage.


Assuntos
Apoptose/efeitos da radiação , Caseína Quinase II/efeitos da radiação , Apoptose/fisiologia , Caseína Quinase II/antagonistas & inibidores , Caseína Quinase II/genética , Caseína Quinase II/metabolismo , Inibidores de Caspase , Divisão Celular/fisiologia , Divisão Celular/efeitos da radiação , Fase G2/fisiologia , Fase G2/efeitos da radiação , Células HeLa , Humanos , Marcação In Situ das Extremidades Cortadas , RNA Interferente Pequeno/genética , Frações Subcelulares/enzimologia , Frações Subcelulares/efeitos da radiação , Transfecção
17.
Mol Cancer Ther ; 5(4): 893-902, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16648559

RESUMO

We previously reported that methoxyamine (an inhibitor of base excision repair) potentiates iododeoxyuridine (IUdR)-induced radiosensitization in human tumor cells. In this study, we investigated the potential mechanisms of this enhanced cell death. Human colorectal carcinoma RKO cells were exposed to IUdR (3 micromol/L) and/or methoxyamine (3 mmol/L) for 48 hours before ionizing radiation (5 Gy). We found that IUdR/methoxyamine altered cell cycle kinetics and led to an increased G1 population but a decreased S population before ionizing radiation. Immediately following ionizing radiation (up to 6 hours), IUdR/methoxyamine-pretreated cells showed a stringent G1-S checkpoint but an insufficient G2-M checkpoint, whereas a prolonged G1 arrest, containing 2CG1 and 4CG1 cells, was found at later times up to 72 hours. Levels of cell cycle-specific markers [p21, p27, cyclin A, cyclin B1, and pcdc2(Y15)] and DNA damage signaling proteins [gammaH2AX, pChk1(S317), and pChk2(T68)] supported these altered cell cycle kinetics. Interestingly, we found that IUdR/methoxyamine pretreatment reduced ionizing radiation-induced apoptosis. Additionally, the extent of cell death through necrosis or autophagy seemed similar in all (IUdR +/- methoxyamine + ionizing radiation) treatment groups. However, a larger population of senescence-activated beta-galactosidase-positive cells was seen in IUdR/methoxyamine/ionizing radiation-treated cells, which was correlated with the increased activation of the senescence factors p53 and pRb. These data indicate that IUdR/methoxyamine pretreatment enhanced the effects of ionizing radiation by causing a prolonged G1 cell cycle arrest and by promoting stress-induced premature senescence. Thus, senescence, a novel ionizing radiation-induced tumor suppression pathway, may be effectively targeted by IUdR/methoxyamine pretreatment, resulting in an improved therapeutic gain for ionizing radiation.


Assuntos
Bromodesoxiuridina/farmacologia , Ciclo Celular/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Hidroxilaminas/farmacologia , Idoxuridina/farmacologia , Radiossensibilizantes/farmacologia , Ciclo Celular/efeitos da radiação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Neoplasias Colorretais , Fase G1/efeitos dos fármacos , Fase G1/efeitos da radiação , Humanos , Cinética
18.
World Neurosurg ; 98: 266-272, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27838432

RESUMO

BACKGROUND: Stereotactic radiosurgery (SRS) alone is an attractive option for treatment of brain metastases. SRS avoids whole-brain radiotherapy (WBRT)-associated morbidity, but is limited by regional central nervous system (CNS) failures and short survival in some patients. We evaluated a subgroup of patients with controlled systemic disease that could represent a favorable patient population for SRS alone. METHODS: All patients with brain metastases treated with SRS without WBRT at our institution between 2004 and 2014 were grouped into two cohorts: those with controlled systemic disease (CSD) for 1 year or longer before prior to presentation with brain metastases and those without (i.e., uncontrolled systemic disease [USD]). Rates of local and regional CNS failure, and overall survival were assessed with χ2 and Student t tests. Cox regression analysis was performed to evaluate independent predictors of regional control and overall survival. RESULTS: Two hundred ninety-four patients underwent SRS to 697 lesions, of which 65 patients had CSD. Median follow-up was 9.7 months. There was no difference in local control between the two cohorts (P = 0.795). Regional CNS control was significantly better for patients with CSD (68% vs. 48%; P = 0.001). Overall survival at 1 and 5 years for CSD were 65% and 13% with USD yielding 41% and 7%, respectively (P < 0.001). Multivariate analysis demonstrated that USD (relative CSD) independently predicts regional failure (hazard ratio [HR], 1.75; P = 0.008) and shorter overall survival (HR, 1.55; P = 0.007). CONCLUSIONS: Patients with brain metastases after 1 year or longer of primary and systemic disease control represent a particularly favorable cohort, with lower regional CNS failure and prolonged survival, for an approach of SRS alone.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/radioterapia , Radiocirurgia/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Encefálicas/secundário , Estudos de Coortes , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Radiocirurgia/tendências , Estudos Retrospectivos , Fatores de Tempo , Resultado do Tratamento
19.
World Neurosurg ; 104: 589-593, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28450235

RESUMO

PURPOSE/OBJECTIVES: The outcomes of repeat stereotactic radiosurgery (SRS) after failure of previous SRS are not well established. We report our overall experience using SRS for the retreatment of locally recurrent brain metastases. METHODS: Patients with brain metastases diagnosed between 2003 and 2015 who underwent repeat SRS for local tumor progression following prior SRS were identified. Rates of local control, radiation necrosis, and overall survival were analyzed. Factors affecting local failure and radiation necrosis were assessed by chi-square test. RESULTS: Twenty-four lesions in 22 patients underwent repeat SRS in a single fraction. Median age was 59 years. The median SRS-1 dose was 18 Gy, and the median SRS-2 dose was 15.5 Gy. The median SRS-1 target volume was 2.25 cm3, and the median SRS-2 target volume was 3.30 cm3. The median follow-up from SRS-2 was 8.8 months. The actuarial local controls for SRS-2 were 94.1% and 61.1% at 6 and 12 months, respectively. The incidences of actuarial radiation necrosis were 9.2% and 9.2% at 6 and 12 months, respectively. Volume of tumor >4 cm3 correlated with increased risk of local failure (P = 0.006) with no local failures recorded with volumes ≤4 cm3. SRS-2 dose, cumulative SRS dose, receipt of whole brain radiotherapy, and use of SRS-2 as boost after surgery did not correlate with local failure or radiation necrosis. Median overall survival after SRS-2 was 8.78 months. CONCLUSION: Repeat SRS is feasible for select patients, particularly for those with tumor volume ≤4 cm3. Further evaluation is needed to establish the most appropriate treatment doses and volumes for this approach.


Assuntos
Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/cirurgia , Recidiva Local de Neoplasia/cirurgia , Radiocirurgia/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Encefálicas/mortalidade , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/mortalidade , Estudos Retrospectivos , Análise de Sobrevida , Falha de Tratamento , Carga Tumoral
20.
Clin Cancer Res ; 11(6): 2355-63, 2005 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-15788687

RESUMO

PURPOSE: The purine antimetabolite, 6-thioguanine (6-TG), is an effective drug in the management of acute leukemias. In this study, we analyze the mechanisms of apoptosis associated with 6-TG treatment and casein kinase 2 (CK2 or CKII) in human tumor cells. EXPERIMENTAL DESIGN: Small interfering RNA and chemical CK2 inhibitors were used to reduce CK2 activity. Control and CK2 activity-reduced cells were cultured with 6-TG and assessed by flow cytometry to measure apoptosis and cell cycle profiles. Additionally, confocal microscopy was used to assess localization of CK2 catalytic units following 6-TG treatment. RESULTS: Transfection of small interfering RNA against the CK2 alpha and/or alpha' catalytic subunits results in marked apoptosis of HeLa cells following treatment with 6-TG. Chemical inhibitors of CK2 also induce apoptosis following 6-TG treatment. Apoptosis induced by 6-TG is similarly observed in both mismatch repair-proficient and -deficient HCT116 and HeLa cells. Concomitant treatment with a pan-caspase inhibitor or transfection of apoptosis repressor with caspase recruitment domain markedly suppresses the apoptotic response to DNA damage by 6-TG in the CK2-reduced cells, indicating caspase regulation by CK2. CK2 alpha relocalizes to the endoplasmic reticulum after 6-TG treatment. Additionally, transfection of Cdc2 with a mutation at Ser(39) to Ala, which is the CK2 phosphorylation site, partially inhibits cell cycle progression in G(1) to G(2) phase following 6-TG treatment. CONCLUSION: CK2 is essential for apoptosis inhibition following DNA damage induced by 6-TG, controlling caspase activity.


Assuntos
Apoptose/efeitos dos fármacos , Caseína Quinase II/farmacologia , Caspases/metabolismo , Ciclo Celular/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Tioguanina/farmacologia , Apoptose/fisiologia , Caseína Quinase II/genética , Caspases/efeitos dos fármacos , Ciclo Celular/fisiologia , Reparo do DNA , Retículo Endoplasmático/metabolismo , Inibidores Enzimáticos/farmacologia , Células HeLa/enzimologia , Humanos , RNA Interferente Pequeno/farmacologia , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA