Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
EMBO J ; 42(5): e112880, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36636824

RESUMO

Glycosylation of surface structures diversifies cells chemically and physically. Nucleotide-activated sialic acids commonly serve as glycosyl donors, particularly pseudaminic acid (Pse) and its stereoisomer legionaminic acid (Leg), which decorate eubacterial and archaeal surface layers or protein appendages. FlmG, a recently identified protein sialyltransferase, O-glycosylates flagellins, the subunits of the flagellar filament. We show that flagellin glycosylation and motility in Caulobacter crescentus and Brevundimonas subvibrioides is conferred by functionally insulated Pse and Leg biosynthesis pathways, respectively, and by specialized FlmG orthologs. We established a genetic glyco-profiling platform for the classification of Pse or Leg biosynthesis pathways, discovered a signature determinant of eubacterial and archaeal Leg biosynthesis, and validated it by reconstitution experiments in a heterologous host. Finally, by rewiring FlmG glycosylation using chimeras, we defined two modular determinants that govern flagellin glycosyltransferase specificity: a glycosyltransferase domain that either donates Leg or Pse and a specialized flagellin-binding domain that identifies the acceptor.


Assuntos
Bactérias , Flagelina , Flagelina/genética , Flagelina/metabolismo , Estereoisomerismo , Bactérias/metabolismo , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Sialiltransferases/genética , Sialiltransferases/metabolismo , Archaea/metabolismo , Flagelos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
2.
Environ Microbiol ; 23(8): 4112-4125, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34245087

RESUMO

Clostridia comprise bacteria of environmental, biotechnological and medical interest and many commensals of the gut microbiota. Because of their strictly anaerobic lifestyle, oxygen is a major stress for Clostridia. However, recent data showed that these bacteria can cope with O2 better than expected for obligate anaerobes through their ability to scavenge, detoxify and consume O2 . Upon O2 exposure, Clostridia redirect their central metabolism onto pathways less O2 -sensitive and induce the expression of genes encoding enzymes involved in O2 -reduction and in the repair of oxidized damaged molecules. While Faecalibacterium prausnitzii efficiently consumes O2 through a specific extracellular electron shuttling system requiring riboflavin, enzymes such as rubrerythrins and flavodiiron proteins with NAD(P)H-dependent O2 - and/or H2 O2 -reductase activities are usually encoded in other Clostridia. These two classes of enzymes play indeed a pivotal role in O2 tolerance in Clostridioides difficile and Clostridium acetobutylicum. Two main signalling pathways triggering O2 -induced responses have been described so far in Clostridia. PerR acts as a key regulator of the O2 - and/or reactive oxygen species-defence machinery while in C. difficile, σB , the sigma factor of the general stress response also plays a crucial role in O2 tolerance by controlling the expression of genes involved in O2 scavenging and repair systems.


Assuntos
Clostridioides difficile , Clostridium acetobutylicum , Clostridium/genética , Oxigênio , Fator sigma
3.
Nucleic Acids Res ; 46(9): 4733-4751, 2018 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-29529286

RESUMO

Clostridium difficile, a major human enteropathogen, must cope with foreign DNA invaders and multiple stress factors inside the host. We have recently provided an experimental evidence of defensive function of the C. difficile CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) system important for its survival within phage-rich gut communities. Here, we describe the identification of type I toxin-antitoxin (TA) systems with the first functional antisense RNAs in this pathogen. Through the analysis of deep-sequencing data, we demonstrate the general co-localization with CRISPR arrays for the majority of sequenced C. difficile strains. We provide a detailed characterization of the overlapping convergent transcripts for three selected TA pairs. The toxic nature of small membrane proteins is demonstrated by the growth arrest induced by their overexpression. The co-expression of antisense RNA acting as an antitoxin prevented this growth defect. Co-regulation of CRISPR-Cas and type I TA genes by the general stress response Sigma B and biofilm-related factors further suggests a possible link between these systems with a role in recurrent C. difficile infections. Our results provide the first description of genomic links between CRISPR and type I TA systems within defense islands in line with recently emerged concept of functional coupling of immunity and cell dormancy systems in prokaryotes.


Assuntos
Sistemas CRISPR-Cas , Clostridioides difficile/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Sistemas Toxina-Antitoxina/genética , Genoma Bacteriano , Genômica , Estabilidade de RNA , RNA Bacteriano/metabolismo
4.
Environ Microbiol ; 21(8): 2852-2870, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31032549

RESUMO

Clostridium difficile is the main cause of antibiotic-associated diarrhoea. Inside the gut, C. difficile must adapt to the stresses it copes with, by inducing protection, detoxification and repair systems that belong to the general stress response involving σB . Following stresses, σB activation requires a PP2C phosphatase to dephosphorylate the anti-anti-sigma factor RsbV that allows its interaction with the anti-sigma factor RsbW and the release of σB . In this work, we studied the signalling pathway responsible for the activation of σB in C. difficile. Contrary to other firmicutes, the expression of sigB in C. difficile is constitutive and not autoregulated. We confirmed the partner switching mechanism that involved RsbV, RsbW and σB . We also showed that CD2685, renamed RsbZ, and its phosphatase activity are required for RsbV dephosphorylation triggering σB activation. While CD0007 and CD0008, whose genes belong to the sigB operon, are not involved in σB activity, depletion of the essential iron-sulphur flavoprotein, CD2684, whose gene forms an operon with rsbZ, prevents σB activation. Finally, we observed that σB is heterogeneously active in a subpopulation of C. difficile cells from the exponential phase, likely leading to a 'bet-hedging' strategy allowing a better chance for the cells to survive adverse conditions.


Assuntos
Clostridioides difficile/metabolismo , Fator sigma/metabolismo , Transdução de Sinais , Bacillus subtilis/genética , Proteínas de Bactérias/metabolismo , Clostridioides difficile/genética , Regulação Bacteriana da Expressão Gênica , Óperon , Fosfoproteínas Fosfatases/metabolismo
5.
PLoS Genet ; 12(9): e1006312, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27631621

RESUMO

The strict anaerobe Clostridium difficile is the most common cause of nosocomial diarrhea, and the oxygen-resistant spores that it forms have a central role in the infectious cycle. The late stages of sporulation require the mother cell regulatory protein σK. In Bacillus subtilis, the onset of σK activity requires both excision of a prophage-like element (skinBs) inserted in the sigK gene and proteolytical removal of an inhibitory pro-sequence. Importantly, the rearrangement is restricted to the mother cell because the skinBs recombinase is produced specifically in this cell. In C. difficile, σK lacks a pro-sequence but a skinCd element is present. The product of the skinCd gene CD1231 shares similarity with large serine recombinases. We show that CD1231 is necessary for sporulation and skinCd excision. However, contrary to B. subtilis, expression of CD1231 is observed in vegetative cells and in both sporangial compartments. Nevertheless, we show that skinCd excision is under the control of mother cell regulatory proteins σE and SpoIIID. We then demonstrate that σE and SpoIIID control the expression of the skinCd gene CD1234, and that this gene is required for sporulation and skinCd excision. CD1231 and CD1234 appear to interact and both proteins are required for skinCd excision while only CD1231 is necessary for skinCd integration. Thus, CD1234 is a recombination directionality factor that delays and restricts skinCd excision to the terminal mother cell. Finally, while the skinCd element is not essential for sporulation, deletion of skinCd results in premature activity of σK and in spores with altered surface layers. Thus, skinCd excision is a key element controlling the onset of σK activity and the fidelity of spore development.


Assuntos
Clostridioides difficile/genética , Diarreia/genética , Recombinação Genética , Fator sigma/genética , Esporos Bacterianos/genética , Bacillus subtilis/genética , Ciclo Celular/genética , Clostridioides difficile/patogenicidade , Infecção Hospitalar/genética , Infecção Hospitalar/microbiologia , Diarreia/microbiologia , Regulação Bacteriana da Expressão Gênica , Humanos , Oxigênio/metabolismo , Prófagos/genética , Esporos Bacterianos/crescimento & desenvolvimento
6.
Environ Microbiol ; 19(5): 1933-1958, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28198085

RESUMO

Clostridium difficile is a major cause of diarrhoea associated with antibiotherapy. Exposed to stresses in the gut, C. difficile can survive by inducing protection, detoxification and repair systems. In several firmicutes, most of these systems are controlled by the general stress response involving σB . In this work, we studied the role of σB in the physiopathology of C. difficile. We showed that the survival of the sigB mutant during the stationary phase was reduced. Using a transcriptome analysis, we showed that σB controls the expression of ∼25% of genes including genes involved in sporulation, metabolism, cell surface biogenesis and the management of stresses. By contrast, σB does not control toxin gene expression. In agreement with the up-regulation of sporulation genes, the sporulation efficiency is higher in the sigB mutant than in the wild-type strain. sigB inactivation also led to increased sensitivity to acidification, cationic antimicrobial peptides, nitric oxide and ROS. In addition, we showed for the first time that σB also plays a crucial role in oxygen tolerance in this strict anaerobe. Finally, we demonstrated that the fitness of colonisation by the sigB mutant is greatly affected in a dixenic mouse model of colonisation when compared to the wild-type strain.


Assuntos
Proteínas de Bactérias/genética , Clostridioides difficile/genética , Trato Gastrointestinal/microbiologia , Regulação Bacteriana da Expressão Gênica/genética , Fator sigma/genética , Animais , Proteínas de Bactérias/metabolismo , Clostridioides difficile/patogenicidade , Reparo do DNA/genética , Diarreia/microbiologia , Farmacorresistência Bacteriana Múltipla/genética , Feminino , Perfilação da Expressão Gênica , Vida Livre de Germes , Camundongos , Camundongos Endogâmicos C3H , Estresse Oxidativo/genética , Fator sigma/metabolismo , Esporos Bacterianos/genética , Esporos Bacterianos/crescimento & desenvolvimento , Regulação para Cima , Fatores de Virulência/genética
7.
Curr Biol ; 34(13): 2932-2947.e7, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38897200

RESUMO

Many bacteria glycosylate flagellin on serine or threonine residues using pseudaminic acid (Pse) or other sialic acid-like donor sugars. Successful reconstitution of Pse-dependent sialylation by the conserved Maf-type flagellin glycosyltransferase (fGT) may require (a) missing component(s). Here, we characterize both Maf paralogs in the Gram-negative bacterium Shewanella oneidensis MR-1 and reconstitute Pse-dependent glycosylation in heterologous hosts. Remarkably, we uncovered distinct acceptor determinants and target specificities for each Maf. Whereas Maf-1 uses its C-terminal tetratricopeptide repeat (TPR) domain to confer flagellin acceptor and O-glycosylation specificity, Maf-2 requires the newly identified conserved specificity factor, glycosylation factor for Maf (GlfM), to form a ternary complex with flagellin. GlfM orthologs are co-encoded with Maf-2 in Gram-negative and Gram-positive bacteria and require an invariant aspartate in their four-helix bundle to function with Maf-2. Thus, convergent fGT evolution underlies distinct flagellin-binding modes in tripartite versus bipartite systems and, consequently, distinct O-glycosylation preferences of acceptor serine residues with Pse.


Assuntos
Flagelina , Flagelina/metabolismo , Flagelina/genética , Glicosilação , Shewanella/metabolismo , Shewanella/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Glicosiltransferases/metabolismo , Glicosiltransferases/genética , Bactérias Gram-Positivas/metabolismo , Bactérias Gram-Positivas/genética , Evolução Molecular
8.
mBio ; : e0159124, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39189748

RESUMO

Clostridioides difficile, the major cause of antibiotic-associated diarrhea, is a strict anaerobic, sporulating Firmicutes. However, during its infectious cycle, this anaerobe is exposed to low oxygen (O2) tensions, with a longitudinal decreasing gradient along the gastrointestinal tract and a second lateral gradient with higher O2 tensions in the vicinity of the cells. A plethora of enzymes involved in oxidative stress detoxication has been identified in C. difficile, including four O2-reducing enzymes: two flavodiiron proteins (FdpA and FdpF) and two reverse rubrerythrins (revRbr1 and revRbr2). Here, we investigated the role of the four O2-reducing enzymes in the tolerance to increasing physiological O2 tensions and air. The four enzymes have different, yet overlapping, spectra of activity. revRbr2 is specific to low O2 tensions (<0.4%), FdpA to low and intermediate O2 tensions (0.4%-1%), revRbr1 has a wider spectrum of activity (0.1%-4%), and finally FdpF is more specific to tensions > 4% and air. These different O2 ranges of action partly arise from differences in regulation of expression of the genes encoding those enzymes. Indeed, we showed that revrbr2 is under the dual control of σA and σB. We also identified a regulator of the Spx family that plays a role in the induction of fdp and revrbr genes upon O2 exposure. Finally, fdpF is regulated by Rex, a regulator sensing the NADH/NAD+ ratio. Our results demonstrate that the multiplicity of O2-reducing enzymes of C. difficile is associated with different roles depending on the environmental conditions, stemming from a complex multi-leveled network of regulation. IMPORTANCE: The gastrointestinal tract is a hypoxic environment, with the existence of two gradients of O2 along the gut, one longitudinal anteroposterior decreasing gradient and one proximodistal increasing from the lumen to the epithelial cells. O2 is a major source of stress for an obligate anaerobe such as the enteropathogen C. difficile. This bacterium possesses a plethora of enzymes capable of scavenging O2 and reducing it to H2O. In this work, we identified the role of the four O2-reducing enzymes in the tolerance to the physiological O2 tensions faced by C. difficile during its infectious cycle. These four enzymes have different spectra of action and protect the vegetative cells over a large range of O2 tensions. These differences are associated with a distinct regulation of each gene encoding those enzymes. The complex network of regulation is crucial for C. difficile to adapt to the various O2 tensions encountered during infection.

9.
Insights Imaging ; 15(1): 106, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597979

RESUMO

OBJECTIVES: Cytogenetic abnormalities are predictors of poor prognosis in multiple myeloma (MM). This paper aims to build and validate a multiparametric conventional and functional whole-body MRI-based prediction model for cytogenetic risk classification in newly diagnosed MM. METHODS: Patients with newly diagnosed MM who underwent multiparametric conventional whole-body MRI, spinal dynamic contrast-enhanced (DCE-)MRI, spinal diffusion-weighted MRI (DWI) and had genetic analysis were retrospectively included (2011-2020/Ghent University Hospital/Belgium). Patients were stratified into standard versus intermediate/high cytogenetic risk groups. After segmentation, 303 MRI features were extracted. Univariate and model-based methods were evaluated for feature and model selection. Testing was performed using receiver operating characteristic (ROC) and precision-recall curves. Models comparing the performance for genetic risk classification of the entire MRI protocol and of all MRI sequences separately were evaluated, including all features. Four final models, including only the top three most predictive features, were evaluated. RESULTS: Thirty-one patients were enrolled (mean age 66 ± 7 years, 15 men, 13 intermediate-/high-risk genetics). None of the univariate models and none of the models with all features included achieved good performance. The best performing model with only the three most predictive features and including all MRI sequences reached a ROC-area-under-the-curve of 0.80 and precision-recall-area-under-the-curve of 0.79. The highest statistical performance was reached when all three MRI sequences were combined (conventional whole-body MRI + DCE-MRI + DWI). Conventional MRI always outperformed the other sequences. DCE-MRI always outperformed DWI, except for specificity. CONCLUSIONS: A multiparametric MRI-based model has a better performance in the noninvasive prediction of high-risk cytogenetics in newly diagnosed MM than conventional MRI alone. CRITICAL RELEVANCE STATEMENT: An elaborate multiparametric MRI-based model performs better than conventional MRI alone for the noninvasive prediction of high-risk cytogenetics in newly diagnosed multiple myeloma; this opens opportunities to assess genetic heterogeneity thus overcoming sampling bias. KEY POINTS: • Standard genetic techniques in multiple myeloma patients suffer from sampling bias due to tumoral heterogeneity. • Multiparametric MRI noninvasively predicts genetic risk in multiple myeloma. • Combined conventional anatomical MRI, DCE-MRI, and DWI had the highest statistical performance to predict genetic risk. • Conventional MRI alone always outperformed DCE-MRI and DWI separately to predict genetic risk. DCE-MRI alone always outperformed DWI separately, except for the parameter specificity to predict genetic risk. • This multiparametric MRI-based genetic risk prediction model opens opportunities to noninvasively assess genetic heterogeneity thereby overcoming sampling bias in predicting genetic risk in multiple myeloma.

10.
Cell Rep ; 42(8): 112890, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37515768

RESUMO

Unidirectional growth of filamentous protein assemblies including the bacterial flagellum relies on dedicated polymerization factors (PFs). The molecular determinants and structural transitions imposed by PFs on multi-subunit assembly are poorly understood. Here, we unveil FlaY from the polarized α-proteobacterium Caulobacter crescentus as a defining member of an alternative class of specialized flagellin PFs. Unlike the paradigmatic FliD capping protein, FlaY relies on a funnel-like ß-propeller fold for flagellin polymerization. FlaY binds flagellin and is secreted by the flagellar secretion apparatus, yet it can also promote flagellin polymerization exogenously when donated from flagellin-deficient cells, serving as a transferable, extracellular public good. While the surge in FlaY abundance precedes bulk flagellin synthesis, FlaY-independent filament assembly is enhanced by mutation of a conserved region in multiple flagellin paralogs. We suggest that FlaYs are (multi-)flagellin PFs that evolved convergently to FliDs yet appropriated the versatile ß-propeller fold implicated in human diseases for chaperone-assisted filament assembly.


Assuntos
Caulobacter , Flagelina , Humanos , Flagelina/metabolismo , Caulobacter/metabolismo , Polimerização , Flagelos/metabolismo , Citoesqueleto/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA