Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Biophys J ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38901429

RESUMO

This summary of recent contributions in the Biophysical Journal from 2020 to 2023 highlights new mechanistic insights into key biomechanical and biophysical aspects of neurodegeneration. Neurodegeneration encompasses complex diseases characterized by the progressive loss of neuronal function, often linked to protein accumulation and aggregation. Several factors, including mechanical properties and structural composition of brain tissue, formation of proteinaceous condensates within cells, and protein transport between cells, impact the loss of neural function.

2.
Anal Chem ; 96(13): 5265-5273, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38502904

RESUMO

Two-phase porous media flow is important in many applications from drug delivery to groundwater diffusion and oil recovery and is of particular interest to biomedical diagnostic test developers using cellulose and nitrocellulose membranes with limited fluid sample volumes. This work presents a new two-phase porous media flow model based on the incompressible Navier-Stokes equation. The model aims to address the limitations of existing methods by incorporating a partial saturation distribution in porous media to account for limited fluid volumes. The basic parameters of the model are the pore size distribution and the contact angle. To validate the model, we solved five analytical solutions and compared them to corresponding experimental data. The experimentally measured penetration length data agreed with the model predictions, demonstrating model accuracy. Our findings suggest that this new two-phase porous media flow model can provide a valuable tool for researchers developing fluidic assays in paper and other porous media.

3.
Anal Chem ; 96(15): 5815-5823, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38575144

RESUMO

Microfluidic techniques are widely applied in biomolecular analysis and disease diagnostic assays. While the volume of the sample that is directly used in such assays is often only femto-to microliters, the "dead volume" of solutions supplied in syringes and tubing can be much larger, even up to milliliters, increasing overall reagent use and making analysis significantly more expensive. To reduce the difficulty and cost, we designed a new chip using a low volume solution for analysis and applied it to obtain real-time data for protein-protein interaction measurements. The chip takes advantage of air/aqueous two-phase droplet flow, on-chip rapid mixing within milliseconds, and a droplet capture method, that ultimately requires only 2 µL of reagent solution. The interaction is analyzed by particle diffusometry, a nonintrusive and precise optical detection method to analyze the properties of microparticle diffusion in solution. Herein, we demonstrate on-chip characterization of human immunodeficiency virus p24 antibody-antigen protein binding kinetics imaged via fluorescence microscopy and analyzed by PD. The measured kon and koff are 1 × 106 M-1 s-1 and 3.3 × 10-4 s-1, respectively, and agree with independent measurement via biolayer interferometry and previously calculated p24-antibody binding kinetics. This new microfluidic chip and the protein-protein interaction analysis method can also be applied in other fields that require low-volume solutions to perform accurate measurement, analysis, and detection.


Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica , Humanos , Cinética , Difusão , Indicadores e Reagentes , Técnicas Analíticas Microfluídicas/métodos
4.
Anal Chem ; 95(49): 18241-18248, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38014879

RESUMO

A tau variant phosphorylated on threonine 181 (pT181-tau) has been widely investigated as a potential Alzheimer's disease (AD) biomarker in cerebrospinal fluid (CSF) and blood. pT181-tau is present in neurofibrillary tangles (NFTs) of AD brains, and CSF levels of pT181-tau correlate with the overall NFT burden. Various immunobased analytical methods, including Western blotting and ELISA, have been used to quantify pT181-tau in human biofluids. The reliability of these methods is dependent on the affinity and binding specificity of the antibodies used to measure pT181-tau levels. Although both of these properties could, in principle, be affected by phosphorylation within or near the antibody's cognate antigen, such effects have not been extensively studied. Here, we developed a biolayer interferometry assay to determine the degree to which the affinity of pT181-tau antibodies is altered by the phosphorylation of serine or threonine residues near the target epitope. Our results revealed that phosphorylation near T181 negatively affected the binding of pT181-tau antibodies to their cognate antigen to varying degrees. In particular, two of three antibodies tested showed a complete loss of affinity for the pT181 target when S184 or S185 was phosphorylated. These findings highlight the importance of selecting antibodies that have been thoroughly characterized in terms of affinity and binding specificity, addressing the potential disruptive effects of post-translational modifications in the epitope region to ensure accurate biomarker quantitation.


Assuntos
Doença de Alzheimer , Proteínas tau , Humanos , Fosforilação , Proteínas tau/química , Reprodutibilidade dos Testes , Doença de Alzheimer/metabolismo , Anticorpos/metabolismo , Antígenos/metabolismo , Epitopos/metabolismo , Treonina/metabolismo , Biomarcadores/metabolismo
5.
Mikrochim Acta ; 191(1): 46, 2023 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-38129631

RESUMO

Immobilization of proteins and enzymes on solid supports has been utilized in a variety of applications, from improved protein stability on supported catalysts in industrial processes to fabrication of biosensors, biochips, and microdevices. A critical requirement for these applications is facile yet stable covalent conjugation between the immobilized and fully active protein and the solid support to produce stable, highly bio-active conjugates. Here, we report functionalization of solid surfaces (gold nanoparticles and magnetic beads) with bio-active proteins using site-specific and biorthogonal labeling and azide-alkyne cycloaddition, a click chemistry. Specifically, we recombinantly express and selectively label calcium-dependent proteins, calmodulin and calcineurin, and cAMP-dependent protein kinase A (PKA) with N-terminal azide-tags for efficient conjugation to nanoparticles and magnetic beads. We successfully immobilized the proteins on to the solid supports directly from the cell lysate with click chemistry, forgoing the step of purification. This approach is optimized to yield low particle aggregation and high levels of protein activity post-conjugation. The entire process enables streamlined workflows for bioconjugation and highly active conjugated proteins.


Assuntos
Azidas , Nanopartículas Metálicas , Ouro , Proteínas/metabolismo , Catálise
6.
Anal Chem ; 94(45): 15655-15662, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36316007

RESUMO

The measurement and optimization of protein-protein interactions are critical in the design of biotherapeutics, biomolecular sensing elements, and functional protein-based biomaterials among other biomolecular sciences and engineering. Current gold standard assays require specifically designed core facilities, equipment, and expertise to implement the measurement, making it inconvenient for most labs unless implemented routinely. We developed a new method aiming at measuring protein binding kinetics based on microfluidics and particle diffusometry (PD), which only needs very general lab equipment, including a fluorescence microscope, a syringe pump, and a simple microchannel fabricated on a glass slide. Protein binding pairs are immobilized on two kinds of nanoparticles with different diameters using widely available conjugation chemistries. The two diluted particle suspensions are injected using a syringe pump into a Y-junction microchannel, where they bind and form particle complexes with increasing size, thereby decreasing particles' Brownian motion amplitude and diffusivity, which can be detected by PD. By taking images at a series of specific points along the microchannel, the particle diffusivity is measured at different time points after the introduction of protein-protein binding. These data are then used to quantify the protein binding kinetic constant. This label-free particle-based method is simple to operate and as accurate as the current gold standard. We demonstrate the feasibility of this accessible method by quantifying the streptavidin-biotin association constant (1.74 ± 0.51 × 107 M-1 s-1), which compares well with previously published results.


Assuntos
Microfluídica , Nanopartículas , Estreptavidina/química , Biotina/química , Cinética , Nanopartículas/química , Tamanho da Partícula
7.
Mol Cell Proteomics ; 19(7): 1220-1235, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32381549

RESUMO

Perlecan is a critical proteoglycan found in the extracellular matrix (ECM) of cartilage. In healthy cartilage, perlecan regulates cartilage biomechanics and we previously demonstrated perlecan deficiency leads to reduced cellular and ECM stiffness in vivo This change in mechanics may lead to the early onset osteoarthritis seen in disorders resulting from perlecan knockdown such as Schwartz-Jampel syndrome (SJS). To identify how perlecan knockdown affects the material properties of developing cartilage, we used imaging and liquid chromatography-tandem mass spectrometry (LC-MS/MS) to study the ECM in a murine model of SJS, Hspg2C1532Y-Neo Perlecan knockdown led to defective pericellular matrix formation, whereas the abundance of bulk ECM proteins, including many collagens, increased. Post-translational modifications and ultrastructure of collagens were not significantly different; however, LC-MS/MS analysis showed more protein was secreted by Hspg2C1532Y-Neo cartilage in vitro, suggesting that the incorporation of newly synthesized ECM was impaired. In addition, glycosaminoglycan deposition was atypical, which may explain the previously observed decrease in mechanics. Overall, these findings provide insight into the influence of perlecan on functional cartilage assembly and the progression of osteoarthritis in SJS.


Assuntos
Cartilagem/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Matriz Extracelular/metabolismo , Proteoglicanas de Heparan Sulfato/metabolismo , Osteocondrodisplasias/metabolismo , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Cartilagem/crescimento & desenvolvimento , Cartilagem/ultraestrutura , Moléculas de Adesão Celular/metabolismo , Condrócitos/citologia , Condrócitos/metabolismo , Cromatografia Líquida , Colágeno Tipo X/genética , Colágeno Tipo X/metabolismo , Modelos Animais de Doenças , Matriz Extracelular/patologia , Ontologia Genética , Glicosaminoglicanos/metabolismo , Proteoglicanas de Heparan Sulfato/deficiência , Proteoglicanas de Heparan Sulfato/genética , Camundongos , Camundongos Endogâmicos DBA , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Osteoartrite/genética , Osteoartrite/metabolismo , Osteoartrite/patologia , Osteocondrodisplasias/genética , Espectrometria de Massas em Tandem
8.
Malar J ; 20(1): 380, 2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34563189

RESUMO

BACKGROUND: Globally, there are over 200 million cases of malaria annually and over 400,000 deaths. Early and accurate detection of low-density parasitaemia and asymptomatic individuals is key to achieving the World Health Organization (WHO) 2030 sustainable development goals of reducing malaria-related deaths by 90% and eradication in 35 countries. Current rapid diagnostic tests are neither sensitive nor specific enough to detect the low parasite concentrations in the blood of asymptomatic individuals. METHODS: Here, an imaging-based sensing technique, particle diffusometry (PD), is combined with loop mediated isothermal amplification (LAMP) on a smartphone-enabled device to detect low levels of parasitaemia often associated with asymptomatic malaria. After amplification, PD quantifies the Brownian motion of fluorescent nanoparticles in the solution during a 30 s video taken on the phone. The resulting diffusion coefficient is used to detect the presence of Plasmodium DNA amplicons. The coefficients of known negative samples are compared to positive samples using a one-way ANOVA post-hoc Dunnett's test for confirmation of amplification. RESULTS: As few as 3 parasite/µL of blood was detectable in 45 min without DNA extraction. Plasmodium falciparum parasites were detected from asymptomatic individuals' whole blood samples with 89% sensitivity and 100% specificity when compared to quantitative polymerase chain reaction (qPCR). CONCLUSIONS: PD-LAMP is of value for the detection of low density parasitaemia especially in areas where trained personnel may be scarce. The demonstration of this smartphone biosensor paired with the sensitivity of LAMP provides a proof of concept to achieve widespread asymptomatic malaria testing at the point of care.


Assuntos
Doenças Assintomáticas/epidemiologia , Testes Diagnósticos de Rotina/métodos , Malária Falciparum/diagnóstico , Malária Vivax/diagnóstico , Parasitemia/diagnóstico , Sistemas Automatizados de Assistência Junto ao Leito/normas , Smartphone/estatística & dados numéricos , Criança , Pré-Escolar , Humanos , Lactente , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , Plasmodium falciparum/isolamento & purificação , Plasmodium vivax/isolamento & purificação , Uganda
9.
Biochemistry ; 59(13): 1309-1313, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32207972

RESUMO

In a radical departure from the classical E1-E2-E3 three-enzyme mediated ubiquitination of eukaryotes, the recently described bacterial enzymes of the SidE family of Legionella pneumophila effectors utilize NAD+ to ligate ubiquitin onto target substrate proteins. This outcome is achieved via a two-step mechanism involving (1) ADP ribosylation of ubiquitin followed by (2) phosphotransfer to a target serine residue. Here, using fluorescent NAD+ analogues as well as synthetic substrate mimics, we have developed continuous assays enabling real-time monitoring of both steps of this mechanism. These assays are amenable to biochemical studies and high-throughput screening of inhibitors of these effectors, and the discovery and characterization of putative enzymes similar to members of the SidE family in other organisms. We also show their utility in studying enzymes that can reverse and inhibit this post-translational modification.


Assuntos
Proteínas de Bactérias/metabolismo , Bioquímica/métodos , Corantes Fluorescentes/química , Legionella pneumophila/metabolismo , Serina/metabolismo , Difosfato de Adenosina/metabolismo , Motivos de Aminoácidos , Proteínas de Bactérias/química , Corantes Fluorescentes/metabolismo , Legionella pneumophila/química , Legionella pneumophila/genética , NAD/química , NAD/metabolismo , Serina/química , Ubiquitinação
10.
PLoS Comput Biol ; 15(12): e1006941, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31869343

RESUMO

Ca2+/calmodulin-dependent protein kinase II (CaMKII) accounts for up to 2 percent of all brain protein and is essential to memory function. CaMKII activity is known to regulate dynamic shifts in the size and signaling strength of neuronal connections, a process known as synaptic plasticity. Increasingly, computational models are used to explore synaptic plasticity and the mechanisms regulating CaMKII activity. Conventional modeling approaches may exclude biophysical detail due to the impractical number of state combinations that arise when explicitly monitoring the conformational changes, ligand binding, and phosphorylation events that occur on each of the CaMKII holoenzyme's subunits. To manage the combinatorial explosion without necessitating bias or loss in biological accuracy, we use a specialized syntax in the software MCell to create a rule-based model of a twelve-subunit CaMKII holoenzyme. Here we validate the rule-based model against previous experimental measures of CaMKII activity and investigate molecular mechanisms of CaMKII regulation. Specifically, we explore how Ca2+/CaM-binding may both stabilize CaMKII subunit activation and regulate maintenance of CaMKII autophosphorylation. Noting that Ca2+/CaM and protein phosphatases bind CaMKII at nearby or overlapping sites, we compare model scenarios in which Ca2+/CaM and protein phosphatase do or do not structurally exclude each other's binding to CaMKII. Our results suggest a functional mechanism for the so-called "CaM trapping" phenomenon, wherein Ca2+/CaM may structurally exclude phosphatase binding and thereby prolong CaMKII autophosphorylation. We conclude that structural protection of autophosphorylated CaMKII by Ca2+/CaM may be an important mechanism for regulation of synaptic plasticity.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/química , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Calmodulina/metabolismo , Animais , Sítios de Ligação , Fenômenos Biofísicos , Cálcio/metabolismo , Biologia Computacional , Estabilidade Enzimática , Hipocampo/metabolismo , Humanos , Modelos Moleculares , Modelos Neurológicos , Plasticidade Neuronal , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , Ligação Proteica , Estrutura Quaternária de Proteína , Subunidades Proteicas
11.
J Vasc Res ; 55(1): 1-12, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29166645

RESUMO

The apolipoprotein E-deficient (apoE-/-) mouse model has advanced our understanding of cardiovascular disease mechanisms and experimental therapeutics. This spontaneous model recapitulates aspects of human atherosclerosis, and allows for the development of dissecting abdominal aortic aneurysms (AAAs) when combined with angiotensin II. We characterized apoE-/- rats and hypothesized that, similar to mice, they would develop dissecting AAAs. We created rats with a 16-bp deletion of the apoE gene using transcription activator-like effector nucleases. We imaged the suprarenal aorta for 28 days after implantation of miniosmotic pumps that infuse angiotensin II (AngII, 200 ng/kg/min). Blood pressure (BP), serum lipids and lipoproteins, and histology were also analyzed. These rats did not develop pathological aortic dissection, but we did observe a decrease in circumferential cyclic strain, a rise in BP, and microstructural changes in the aortic medial layer. We also measured increased serum lipids with and without administration of a high-fat diet, but did not detect atherosclerotic plaques. Chronic infusion of AngII did not lead to the formation of dissecting AAAs or atherosclerosis in the rats used in this study. While reduced amounts of atherosclerosis may explain this resistance to dissecting aneurysms, further investigation is needed to fully characterize species-specific differences.


Assuntos
Angiotensina II , Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/metabolismo , Dissecção Aórtica/metabolismo , Apolipoproteínas E/deficiência , Dissecção Aórtica/induzido quimicamente , Dissecção Aórtica/diagnóstico por imagem , Dissecção Aórtica/genética , Animais , Aorta Abdominal/diagnóstico por imagem , Aorta Abdominal/patologia , Aorta Abdominal/fisiopatologia , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/diagnóstico por imagem , Aneurisma da Aorta Abdominal/genética , Apolipoproteínas E/genética , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Pressão Sanguínea , Colesterol/sangue , Modelos Animais de Doenças , Técnicas de Inativação de Genes , Predisposição Genética para Doença , Fenótipo , Ratos Sprague-Dawley , Ratos Transgênicos , Fatores de Tempo , Ultrassonografia Doppler
12.
PLoS Comput Biol ; 13(11): e1005820, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29107982

RESUMO

A number of neurological disorders arise from perturbations in biochemical signaling and protein complex formation within neurons. Normally, proteins form networks that when activated produce persistent changes in a synapse's molecular composition. In hippocampal neurons, calcium ion (Ca2+) flux through N-methyl-D-aspartate (NMDA) receptors activates Ca2+/calmodulin signal transduction networks that either increase or decrease the strength of the neuronal synapse, phenomena known as long-term potentiation (LTP) or long-term depression (LTD), respectively. The calcium-sensor calmodulin (CaM) acts as a common activator of the networks responsible for both LTP and LTD. This is possible, in part, because CaM binding proteins are "tuned" to different Ca2+ flux signals by their unique binding and activation dynamics. Computational modeling is used to describe the binding and activation dynamics of Ca2+/CaM signal transduction and can be used to guide focused experimental studies. Although CaM binds over 100 proteins, practical limitations cause many models to include only one or two CaM-activated proteins. In this work, we view Ca2+/CaM as a limiting resource in the signal transduction pathway owing to its low abundance relative to its binding partners. With this view, we investigate the effect of competitive binding on the dynamics of CaM binding partner activation. Using an explicit model of Ca2+, CaM, and seven highly-expressed hippocampal CaM binding proteins, we find that competition for CaM binding serves as a tuning mechanism: the presence of competitors shifts and sharpens the Ca2+ frequency-dependence of CaM binding proteins. Notably, we find that simulated competition may be sufficient to recreate the in vivo frequency dependence of the CaM-dependent phosphatase calcineurin. Additionally, competition alone (without feedback mechanisms or spatial parameters) could replicate counter-intuitive experimental observations of decreased activation of Ca2+/CaM-dependent protein kinase II in knockout models of neurogranin. We conclude that competitive tuning could be an important dynamic process underlying synaptic plasticity.


Assuntos
Cálcio/metabolismo , Simulação por Computador , Proteínas Sensoras de Cálcio Intracelular/metabolismo , Animais , Ligação Competitiva , Hipocampo/metabolismo , Potenciação de Longa Duração , Camundongos , Camundongos Knockout , Plasticidade Neuronal , Fosforilação , Ligação Proteica , Transdução de Sinais
13.
J Lipid Res ; 58(10): 2061-2070, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28754825

RESUMO

Protein post-translational modifications (PTMs) serve to give proteins new cellular functions and can influence spatial distribution and enzymatic activity, greatly enriching the complexity of the proteome. Lipidation is a PTM that regulates protein stability, function, and subcellular localization. To complement advances in proteomic identification of lipidated proteins, we have developed a method to image the spatial distribution of proteins that have been co- and post-translationally modified via the addition of myristic acid (Myr) to the N terminus. In this work, we use a Myr analog, 12-azidododecanoic acid (12-ADA), to facilitate fluorescent detection of myristoylated proteins in vitro and in vivo. The azide moiety of 12-ADA does not react to natural biological chemistries, but is selectively reactive with alkyne functionalized fluorescent dyes. We find that the spatial distribution of myristoylated proteins varies dramatically between undifferentiated and differentiated muscle cells in vitro. Further, we demonstrate that our methodology can visualize the distribution of myristoylated proteins in zebrafish muscle in vivo. Selective protein labeling with noncanonical fatty acids, such as 12-ADA, can be used to determine the biological function of myristoylation and other lipid-based PTMs and can be extended to study deregulated protein lipidation in disease states.


Assuntos
Diferenciação Celular , Ácido Mirístico/metabolismo , Imagem Óptica , Processamento de Proteína Pós-Traducional , Animais , Linhagem Celular , Ácidos Láuricos/metabolismo , Camundongos , Proteômica
14.
Anal Chem ; 89(24): 13334-13341, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29148723

RESUMO

Analytical characterization of DNA microviscosity provides critical biophysical insights into nuclear crowding, nucleic acid based pharmaceutical development, and nucleic acid based biosensor device design. However, most viscosity characterization methods require large sample volumes and destructive testing. In contrast, particle diffusometry permits in situ analysis of DNA microviscosity with short measurement times (8 s) using small volumes (<3 µL) which are compatible with DNA preparatory procedures. This unconventional biosensing approach involves measuring the change in sample viscosity using image processing and correlation-based algorithms. Particle diffusometry requires only a fluorescence microscope equipped with a charge-coupled device (CCD) camera and is a nondestructive measurement method. We use particle diffusometry to characterize the effect of DNA topology, length, and concentration on solution viscosity. In addition, we use particle diffusometry to detect the amplification of DNA from Staphylococcus aureus and Klebsiella pneumoniae, two pathogens commonly related to neonatal sepsis. Successful characterization of pathogen amplification with particle diffusometry provides a new opportunity to apply viscosity characterization toward downstream applications in nucleic acid based pathogen detection.


Assuntos
Técnicas Biossensoriais , DNA Bacteriano/análise , Klebsiella pneumoniae/química , Staphylococcus aureus/química , Difusão , Tamanho da Partícula , Propriedades de Superfície , Viscosidade
15.
Bioconjug Chem ; 26(10): 2153-60, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26431265

RESUMO

Calmodulin (CaM) is a widely studied Ca(2+)-binding protein that is highly conserved across species and involved in many biological processes, including vesicle release, cell proliferation, and apoptosis. To facilitate biophysical studies of CaM, researchers have tagged and mutated CaM at various sites, enabling its conjugation to fluorophores, microarrays, and other reactive partners. However, previous attempts to add a reactive label to CaM for downstream studies have generally employed nonselective labeling methods or resulted in diminished CaM function. Here we report the first engineered CaM protein that undergoes site-specific and bioorthogonal labeling while retaining wild-type activity levels. By employing a chemoenzymatic labeling approach, we achieved selective and quantitative labeling of the engineered CaM protein with an N-terminal 12-azidododecanoic acid tag; notably, addition of the tag did not interfere with the ability of CaM to bind Ca(2+) or a partner protein. The specificity of our chemoenzymatic labeling approach also allowed for selective conjugation of CaM to reactive partners in bacterial cell lysates, without intermediate purification of the engineered protein. Additionally, we prepared CaM-affinity resins that were highly effective in purifying a representative CaM-binding protein, demonstrating that the engineered CaM remains active even after surface capture. Beyond studies of CaM and CaM-binding proteins, the protein engineering and surface capture methods described here should be translatable to other proteins and other bioconjugation applications.


Assuntos
Calmodulina/química , Calmodulina/metabolismo , Engenharia de Proteínas/métodos , Aciltransferases/química , Calcineurina/metabolismo , Cálcio/metabolismo , Calmodulina/genética , Proteínas de Ligação a Calmodulina/isolamento & purificação , Cromatografia Líquida/métodos , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Ácidos Láuricos/química , Espectrometria de Massas/métodos , Resinas Sintéticas/química
16.
PLoS One ; 19(1): e0285651, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38180986

RESUMO

Calcium/calmodulin-dependent protein kinase II (CaMKII) is a complex multifunctional kinase that is highly expressed in central nervous tissues and plays a key regulatory role in the calcium signaling pathway. Despite over 30 years of recombinant expression and characterization studies, CaMKII continues to be investigated for its impact on signaling cooperativity and its ability to bind multiple substrates through its multimeric hub domain. Here we compare and optimize protocols for the generation of full-length wild-type human calcium/calmodulin-dependent protein kinase II alpha (CaMKIIα). Side-by-side comparison of expression and purification in both insect and bacterial systems shows that the insect expression method provides superior yields of the desired autoinhibited CaMKIIα holoenzymes. Utilizing baculovirus insect expression system tools, our results demonstrate a high yield method to produce homogenous, monodisperse CaMKII in its autoinhibited state suitable for biophysical analysis. Advantages and disadvantages of these two expression systems (baculovirus insect cell versus Escherichia coli expression) are discussed, as well as purification optimizations to maximize the enrichment of full-length CaMKII.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Cálcio , Humanos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Baculoviridae/genética , Biofísica , Sinalização do Cálcio , Escherichia coli/genética
17.
iScience ; 27(2): 108838, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38303699

RESUMO

The extracellular matrix (ECM) is an integral part of multicellular organisms, connecting different cell layers and tissue types. During morphogenesis and growth, tissues undergo substantial reorganization. While it is intuitive that the ECM remodels in concert, little is known regarding how matrix composition and organization change during development. Here, we quantified ECM protein dynamics in the murine forelimb during appendicular musculoskeletal morphogenesis (embryonic days 11.5-14.5) using tissue fractionation, bioorthogonal non-canonical amino acid tagging, and mass spectrometry. Our analyses indicated that ECM protein (matrisome) composition in the embryonic forelimb changed as a function of development and growth, was distinct from other developing organs (brain), and was altered in a model of disease (osteogenesis imperfecta murine). Additionally, the tissue distribution for select matrisome was assessed via immunohistochemistry in the wild-type embryonic and postnatal musculoskeletal system. This resource will guide future research investigating the role of the matrisome during complex tissue development.

18.
Chembiochem ; 14(15): 1958-62, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-24030852

RESUMO

A site to behold: Robust site-specific functionalization of engineered proteins is achieved with N-myristoyl transferase (NMT) in bacterial cells. NMT tolerates non-natural substrate proteins as well as reactive fatty acid tags, rendering it a powerful tool for protein conjugation applications, including the construction of protein microarrays from lysate.


Assuntos
Aciltransferases/metabolismo , Engenharia de Proteínas/métodos , Alcinos/química , Azidas/química , Morte Celular , Escherichia coli/citologia , Escherichia coli/enzimologia , Humanos , Modelos Moleculares , Conformação Proteica
19.
Exp Fluids ; 64(2): 26, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36711431

RESUMO

Particle diffusometry, a technology derived from particle image velocimetry, quantifies the Brownian motion of particles suspended in a quiescent solution by computing the diffusion coefficient. Particle diffusometry has been used for pathogen detection by measuring the change in solution viscosity due to amplified DNA from a specific gene target. However, particle diffusometry fails to calculate accurate measurements at elevated temperatures and fluid flow. Therefore, these two current limitations hinder the potential application where particle diffusometry can further be used. In this work, we expanded the usability of particle diffusometry to be applied to fluid samples with simple shear flow and at various temperatures. A range of diffusion coefficient videos is created to simulate the Brownian motion of particles under flow and temperature conditions. Our updated particle diffusometry analysis forms a correction equation under three different polynomial degrees of shear flow with varying flow rates and temperatures between 25 and 65 °C. An experiment in a channel with a rectangular cross section using a syringe pump to generate a constant flow is done to analyze the modified algorithm. In simulation analysis, the modified algorithm successfully computes the diffusion coefficients with ±  10% error for an average flow rate of up to 8 pixel / Δ t on all three flow types. Complementary experiments confirm the simulation results.

20.
Cell Mol Bioeng ; 16(2): 99-115, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37096070

RESUMO

Background: Identification and quantitation of newly synthesized proteins (NSPs) are critical to understanding protein dynamics in development and disease. Probing the nascent proteome can be achieved using non-canonical amino acids (ncAAs) to selectively label the NSPs utilizing endogenous translation machinery, which can then be quantitated with mass spectrometry. We have previously demonstrated that labeling the in vivo murine proteome is feasible via injection of azidohomoalanine (Aha), an ncAA and methionine (Met) analog, without the need for Met depletion. Aha labeling can address biological questions wherein temporal protein dynamics are significant. However, accessing this temporal resolution requires a more complete understanding of Aha distribution kinetics in tissues. Results: To address these gaps, we created a deterministic, compartmental model of the kinetic transport and incorporation of Aha in mice. Model results demonstrate the ability to predict Aha distribution and protein labeling in a variety of tissues and dosing paradigms. To establish the suitability of the method for in vivo studies, we investigated the impact of Aha administration on normal physiology by analyzing plasma and liver metabolomes following various Aha dosing regimens. We show that Aha administration induces minimal metabolic alterations in mice. Conclusions: Our results demonstrate that we can reproducibly predict protein labeling and that the administration of this analog does not significantly alter in vivo physiology over the course of our experimental study. We expect this model to be a useful tool to guide future experiments utilizing this technique to study proteomic responses to stimuli. Supplementary Information: The online version contains supplementary material available at 10.1007/s12195-023-00760-4.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA