Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Toxicol Pathol ; 49(7): 1269-1287, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34555946

RESUMO

Islet-like clusters derived from human embryonic stem cells (hESC) hold the potential to cure type 1 diabetes mellitus. Differentiation protocols of islet-like clusters lead to the generation of minor fractions of nonendocrine cells, which are mainly from endodermal and mesodermal lineages, and the risk of implanting these is unclear. In the present study, the histogenesis and the tumorigenicity of nonendocrine cells were investigated in vivo. Immunodeficient mice were implanted under the kidney capsule with islet-like clusters which were derived from differentiation of cells batches with either an intermediate or poor cell purity and followed for 8 or 26 weeks. Using immunohistochemistry and other techniques, it was found that the intermediate differentiated cell implants had limited numbers of small duct-like cysts and nonpancreatic tissue resembling gastrointestinal and retinal pigmented epithelium. In contrast, highly proliferative cystic teratomas were found at a high incidence at the implant site after 8 weeks, only in the animals implanted with the poorly differentiated cells. These findings indicate that the risk for teratoma formation and the amount of nonpancreatic tissue can be minimized by careful in-process characterization of the cells and thus highlights the importance of high purity at transplantation and a thorough ex-vivo characterization during cell product development.


Assuntos
Diabetes Mellitus Tipo 1 , Células-Tronco Embrionárias Humanas , Animais , Diferenciação Celular , Humanos , Mesoderma , Camundongos
2.
J Clin Invest ; 126(3): 1109-13, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26901817

RESUMO

It has been reported that endogenous retroviruses can contaminate human cell lines that have been passaged as xenotransplants in immunocompromised mice. We previously developed and described 2 human pancreatic ß cell lines (EndoC-ßH1 and EndoC-ßH2) that were generated in this way. Here, we have shown that B10 xenotropic virus 1 (Bxv1), a xenotropic endogenous murine leukemia virus (MuLV), is present in these 2 recently described cell lines. We determined that Bxv1 was also present in SCID mice that were used for in vivo propagation of EndoC-ßH1/2 cells, suggesting that contamination occurred during xenotransplantation. EndoC-ßH1/2 cells released Bxv1 particles that propagated to human 293T and Mus dunni cells. Mobilization assays demonstrated that Bxv1 transcomplements defective MuLV-based retrovectors. In contrast, common rodent ß cell lines, rat INS-1E and RIN-5F cells and mouse MIN6 and ßTC3 cells, displayed either no or extremely weak xenotropic helper activity toward MuLV-based retrovectors, although xenotropic retrovirus sequences and transcripts were detected in both mouse cell lines. Bxv1 propagation from EndoC-ßH1/2 to 293T cells occurred only under optimized conditions and was overall poorly efficient. Thus, although our data imply that MuLV-based retrovectors should be cautiously used in EndoC-ßH1/2 cells, our results indicate that an involuntary propagation of Bxv1 from these cells can be easily avoided with good laboratory practices.


Assuntos
Células Secretoras de Insulina/virologia , Vírus Relacionado ao Vírus Xenotrópico da Leucemia Murina/genética , Animais , Linhagem Celular , Expressão Gênica , Genoma Viral , Xenoenxertos , Humanos , Camundongos , Camundongos SCID , Ratos , Proteínas do Envelope Viral/metabolismo , Integração Viral , Replicação Viral , Vírus Relacionado ao Vírus Xenotrópico da Leucemia Murina/metabolismo
3.
Mol Endocrinol ; 30(1): 133-43, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26649805

RESUMO

Diabetes is characterized by insulin insufficiency due to a relative paucity of functional ß-cell mass. Thus, strategies for increasing ß-cell mass in situ are sought-after for therapeutic purposes. Pregnancy is a physiological state capable of inducing robust ß-cell mass expansion, however, the mechanisms driving this expansion are not fully understood. Thus, the aim of this study was to characterize pregnancy-induced changes in the islet proteome at the peak of ß-cell proliferation in mice. Islets from pregnant and nonpregnant littermates were compared via 2 proteomic strategies. In vivo pulsed stable isotope labeling of amino acids in cell culture was used to monitor de novo protein synthesis during the first 14.5 days of pregnancy. In parallel, protein abundance was determined using ex vivo dimethyl labelling at gestational day 14.5. Comparison of the 2 datasets revealed 170 islet proteins to be up regulated as a response to pregnancy. These included several proteins, not previously associated with pregnancy-induced islet expansion, such as CLIC1, STMN1, MCM6, PPIB, NEDD4, and HLTF. Confirming the validity of our approach, we also identified proteins encoded by genes known to be associated with pregnancy-induced islet expansion, such as CHGB, IGFBP5, MATN2, EHHADH, IVD, and BMP1. Bioinformatic analyses demonstrated enrichment and activation of the biological functions: "protein synthesis" and "proliferation," and predicted the transcription factors HNF4α, MYC, MYCN, E2F1, NFE2L2, and HNF1α as upstream regulators of the observed expressional changes. As the first characterization of the islet-proteome during pregnancy, this study provides novel insight into the mechanisms involved in promoting pregnancy-induced ß-cell mass expansion and function.


Assuntos
Proliferação de Células/fisiologia , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Proteômica/métodos , Animais , Feminino , Camundongos , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA