Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Mol Psychiatry ; 26(11): 6912-6925, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33981006

RESUMO

Reduced activity of the mediodorsal thalamus (MD) and abnormal functional connectivity of the MD with the prefrontal cortex (PFC) cause cognitive deficits in schizophrenia. However, the molecular basis of MD hypofunction in schizophrenia is not known. Here, we identified leucine-rich-repeat transmembrane neuronal protein 1 (LRRTM1), a postsynaptic cell-adhesion molecule, as a key regulator of excitatory synaptic function and excitation-inhibition balance in the MD. LRRTM1 is strongly associated with schizophrenia and is highly expressed in the thalamus. Conditional deletion of Lrrtm1 in the MD in adult mice reduced excitatory synaptic function and caused a parallel reduction in the afferent synaptic activity of the PFC, which was reversed by the reintroduction of LRRTM1 in the MD. Our results indicate that chronic reduction of synaptic strength in the MD by targeted deletion of Lrrtm1 functionally disengages the MD from the PFC and may account for cognitive, social, and sensorimotor gating deficits, reminiscent of schizophrenia.


Assuntos
Esquizofrenia , Animais , Cognição/fisiologia , Proteínas de Membrana , Camundongos , Proteínas do Tecido Nervoso/genética , Córtex Pré-Frontal , Esquizofrenia/genética , Filtro Sensorial , Tálamo
2.
Mov Disord ; 36(4): 938-947, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33135810

RESUMO

BACKGROUND: Levodopa (l-dopa) is the frontline treatment for motor symptoms of Parkinson's disease. However, prolonged use of l-dopa results in a motor complication known as levodopa-induced dyskinesia (LID) in ~50% of patients over 5 years. OBJECTIVES: We investigated neurovascular abnormalities in a rat model of LID by examining changes in angiogenesis and dopamine-dependent vessel diameter changes. METHODS: Differences in striatal and nigral angiogenesis in a parkinsonian rat model (6-OHDA lesion) treated with 2 doses of l-dopa (saline, 2, and 10 mg/kg/day subcutaneous l-dopa treatment for 22 days) by 5-bromo-2'-deoxyuridine (BrdU)-RECA1 co-immunofluorescence. Difference in the vasomotor response to dopamine was examined with 2-photon laser scanning microscopy and Dodt gradient imaging. RESULTS: We found that the 10 mg/kg l-dopa dosing regimen induced LID in all animals (n = 5) and induced significant angiogenesis in the striatum and substantia nigra. In contrast, the 2 mg/kg treatment induced LID in 6 out of 12 rats and led to linearly increasing LID severity over the 22-day treatment period, making this a promising model for studying LID progression longitudinally. However, no significantly different level of angiogenesis was observed between LID versus non-LID animals. Dopamine-induced vasodilatory responses were exaggerated only in rats that show LID-like signs compared to the rest of groups. Additionally, in juvenile rats, we showed that DA-induced vasodilation is preceded by increased Ca2+ release in the adjacent astrocytes. CONCLUSION: This finding supports that astrocytic dopamine signaling controls striatal blood flow bidirectionally, and the balance is altered in LID. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Discinesia Induzida por Medicamentos , Doença de Parkinson , Animais , Antiparkinsonianos/toxicidade , Corpo Estriado , Modelos Animais de Doenças , Dopamina , Humanos , Levodopa/toxicidade , Oxidopamina/toxicidade , Doença de Parkinson/tratamento farmacológico , Ratos
3.
Neuroscience ; 537: 151-164, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38056620

RESUMO

The paraventricular nucleus of the thalamus (PVT) sends dense projections to the shell of the nucleus accumbens (NAcSh), dorsolateral region of the bed nucleus of the stria terminalis (BSTDL) and the lateral region of central nucleus of the amygdala (CeL). Projection specific modulation of these pathways has been shown to regulate appetitive and aversive behavioral responses. The present investigation applied an intersectional monosynaptic rabies tracing approach to quantify the brain-wide sources of afferent input to PVT neurons that primarily project to the NAcSh, BSTDL and CeL. The results demonstrate that these projection neurons receive monosynaptic input from similar brain regions. The prefrontal cortex and the ventral subiculum of the hippocampus were major sources of input to the PVT projection neurons. In addition, the lateral septal nucleus, thalamic reticular nucleus and the hypothalamic medial preoptic area, dorsomedial, ventromedial, and arcuate nuclei were sources of input. The subfornical organ, parasubthalamic nucleus, periaqueductal gray matter, lateral parabrachial nucleus, and nucleus of the solitary tract were consistent but lesser sources of input. This input-output relationship is consistent with recent observations that PVT neurons have axons that bifurcate extensively to divergently innervate the NAcSh, BSTDL and CeL.


Assuntos
Núcleo Central da Amígdala , Núcleo Accumbens , Núcleo Hipotalâmico Paraventricular , Hipotálamo , Neurônios , Vias Neurais/fisiologia
4.
Brain Struct Funct ; 227(7): 2409-2437, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35838792

RESUMO

The paraventricular nucleus of the thalamus (PVT) projects to areas of the forebrain involved in regulating behavior. Homeostatic challenges and salient cues activate the PVT and evidence shows that the PVT regulates appetitive and aversive responses. The brainstem is a source of afferents to the PVT and the present study was done to determine if the lateral parabrachial nucleus (LPB) is a relay for inputs to the PVT. Retrograde tracing experiments with cholera toxin B (CTB) demonstrate that the LPB contains more PVT projecting neurons than other regions of the brainstem including the catecholamine cell groups. The hypothesis that the LPB is a relay for signals to the PVT was assessed using an intersectional monosynaptic rabies tracing approach. Sources of inputs to LPB included the reticular formation; periaqueductal gray (PAG); nucleus cuneiformis; and superior and inferior colliculi. Distinctive clusters of input cells to LPB-PVT projecting neurons were also found in the dorsolateral bed nucleus of the stria terminalis (BSTDL) and the lateral central nucleus of the amygdala (CeL). Anterograde viral tracing demonstrates that LPB-PVT neurons densely innervate all regions of the PVT in addition to providing collateral innervation to the preoptic area, lateral hypothalamus, zona incerta and PAG but not the BSTDL and CeL. The paper discusses the anatomical evidence that suggests that the PVT is part of a network of interconnected neurons involved in arousal, homeostasis, and the regulation of behavioral states with forebrain regions potentially providing descending modulation or gating of signals relayed from the LPB to the PVT.


Assuntos
Núcleos da Linha Média do Tálamo , Núcleo Hipotalâmico Paraventricular , Animais , Tronco Encefálico , Neurônios , Prosencéfalo , Ratos , Ratos Sprague-Dawley , Tálamo
5.
Front Behav Neurosci ; 15: 627633, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33732118

RESUMO

The brain anxiety network is composed of a number of interconnected cortical regions that detect threats and execute appropriate defensive responses via projections to the shell of the nucleus accumbens (NAcSh), dorsolateral region of the bed nucleus of the stria terminalis (BSTDL) and lateral region of the central nucleus of the amygdala (CeL). The paraventricular nucleus of the thalamus (PVT) is anatomically positioned to integrate threat- and arousal-related signals from cortex and hypothalamus and then relay these signals to neural circuits in the NAcSh, BSTDL, and CeL that mediate defensive responses. This review describes the anatomical connections of the PVT that support the view that the PVT may be a critical node in the brain anxiety network. Experimental findings are reviewed showing that the arousal peptides orexins (hypocretins) act at the PVT to promote avoidance of potential threats especially following exposure of rats to a single episode of footshocks. Recent anatomical and experimental findings are discussed which show that neurons in the PVT provide divergent projections to subcortical regions that mediate defensive behaviors and that the projection to the NAcSh is critical for the enhanced social avoidance displayed in rats exposed to footshocks. A theoretical model is proposed for how the PVT integrates cortical and hypothalamic signals to modulate the behavioral responses associated with anxiety and other challenging situations.

6.
Brain Struct Funct ; 226(6): 1779-1802, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34032911

RESUMO

Neurons in the paraventricular nucleus of the thalamus (PVT) respond to emotionally salient events and project densely to subcortical regions known to mediate adaptive behavioral responses. The areas of the forebrain most densely innervated by the PVT include striatal-like subcortical regions that consist of the shell of the nucleus accumbens (NAcSh), the dorsolateral region of the bed nucleus of the stria terminalis (BSTDL) and the lateral-capsular division of the central nucleus of the amygdala (CeL). A recent tracing experiment demonstrated that the PVT is composed of two intermixed populations of neurons that primarily project to either the dorsomedial (dmNAcSh) or ventromedial region of the NAcSh (vmNAcSh) with many of the vmNAcSh projecting neurons providing collateral innervation of the BSTDL and CeL. The present study used triple injections of the retrograde tracer cholera toxin B to provide a detailed map of the location of PVT neurons that provide collaterals to the vmNAcSh, BSTDL and CeL. These neurons were intermixed throughout the PVT and did not form uniquely localized subpopulations. An intersectional viral anterograde tracing approach was used to demonstrate that regardless of its presumed target of innervation (dmNAcSh, vmNAcSh, BSTDL, or CeL), most neurons in the PVT provide collateral innervation to a common set of forebrain regions. The paper shows that PVT-dmNAcSh projecting neurons provide the most divergent projection system and that these neurons express the immediate early gene product cFos following an aversive incident. We propose that the PVT may regulate a broad range of responses to physiological and psychological challenges by simultaneously influencing functionally diverse regions of the forebrain that include the cortex, striatal-like regions in the basal forebrain and a number of hypothalamic nuclei.


Assuntos
Neurônios , Núcleo Hipotalâmico Paraventricular , Prosencéfalo , Animais , Núcleos da Linha Média do Tálamo , Vias Neurais , Ratos , Ratos Sprague-Dawley , Tálamo
7.
Neurobiol Stress ; 13: 100266, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33344719

RESUMO

The paraventricular nucleus of the thalamus (PVT) is an area of the dorsal midline thalamus that contributes to footshock induced anxiety. The PVT sends a dense projection to the shell of the nucleus accumbens (NAcSh) and the present study explored if this projection is involved in the behavioral changes produced by a single exposure of rats to inescapable footshocks. The inhibitory Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) hM4Di was transduced in PVT neurons that project to the NAcSh. Rats were exposed to an episode of moderately intense footshock (1.5 mA × 2 s × 5) and assigned to either high-responder (HR) or low-responder groups (LR) according to their level of fear generalization 24 h later. The effect of chemogenetic inhibition of the PVT-NAcSh projection on anxiety- and fear-like behaviors was assessed at approximately 2 weeks post-footshock. HR showed a higher level of social avoidance compared to non-shocked animals and LR. The elevated level of social avoidance was attenuated in the HR treated with the hM4Di agonist clozapine (0.01 mg/kg, i.p.) or clozapine N-oxide (CNO) administrations in the NAcSh while avoidance of open spaces and contextual fear expression were not affected. Analysis of protein product of the early to immediate gene cfos indicated that these effects were mediated by dynorphin neurons in the NAcSh. This study provides evidence for a role of a projection from the PVT to the NAcSh in stress-induced social avoidance independent of anxiety to non-social stimuli and contextual fear mechanisms.

8.
J Comp Neurol ; 506(2): 263-87, 2008 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-18022956

RESUMO

The paraventricular nucleus of the thalamus (PVT) is part of a group of midline and intralaminar thalamic nuclei implicated in arousal and attention. This study examined the connections between the PVT and the forebrain by using the retrograde tracer cholera toxin B (CTb) and the anterograde tracer biotin dextran amine (BDA). The anterior and posterior regions of the PVT were found to send a dense projection to the nucleus accumbens. The posterior PVT was also found to provide a strong projection to the lateral bed nucleus of the stria terminalis (BST), interstitial nucleus of the posterior limb of the anterior commissure (IPAC), and central nucleus of the amygdala (CeA), regions associated with the extended amygdala. In contrast, the anterior PVT was found to send a weaker projection to the extended amygdala. The basolateral nucleus of the amygdala and the medial prefrontal cortex were found to receive a relatively weak projection from the PVT, and other regions of the BST and amygdala were found to be poorly innervated by the PVT. In addition, the PVT was found to innervate regions in the extended amygdala that contained corticotropin-releasing factor (CRF) neurons, many of which were found to receive apparent contacts from PVT fibers. The projection from the PVT to the nucleus accumbens and extended amygdala places the PVT in a key anatomical position to influence adaptive behaviors as well as the physiological and neuroendocrine responses associated with these behaviors.


Assuntos
Vias Aferentes/fisiologia , Tonsila do Cerebelo/fisiologia , Mapeamento Encefálico , Núcleos da Linha Média do Tálamo/fisiologia , Vias Aferentes/anatomia & histologia , Tonsila do Cerebelo/anatomia & histologia , Animais , Biotina/análogos & derivados , Biotina/metabolismo , Toxina da Cólera/metabolismo , Dextranos/metabolismo , Masculino , Núcleos da Linha Média do Tálamo/anatomia & histologia , Núcleos da Linha Média do Tálamo/citologia , Prosencéfalo/anatomia & histologia , Prosencéfalo/fisiologia , Ratos , Ratos Sprague-Dawley
9.
Sci Rep ; 8(1): 17701, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30532054

RESUMO

Alarm pheromones alert conspecifics to the presence of danger. Can pheromone communication aid in learning specific cues? Such facilitation has an evident evolutionary advantage. We use two associative learning paradigms to test this hypothesis. The first is stressed cage mate-induced conditioning. One pair-housed adult rat received 4 pairings of terpinene + shock over 30 min. Ten minutes after return to the home cage, its companion rat was removed and exposed to terpinene. Single-housed controls were exposed to either terpinene or shock only. Companion rats showed terpinene-specific freezing, which was prevented by ß-adrenoceptor blockade. Using Arc to index neuronal activation in response to terpinene re-exposure, stressed cage-mate induced associative learning was measured. Companion rats showed increased neuronal activity in the accessory olfactory bulb, while terpinene + shock-conditioned rats showed increased activity in the main olfactory bulb. Both groups had enhanced activity in the anterior basolateral amygdala and central amygdala. To test involvement of pheromone mediation, in the 2nd paradigm, we paired terpinene with soiled bedding from odor + shock rats or a rat alarm pheromone. Both conditioning increased rats' freezing to terpinene. Blocking NMDA receptors in the basolateral amygdala prevented odor-specific learning suggesting shock and pheromone-paired pathways converge in the amygdala. An alarm pheromone thus enables cue-specific learning as well as signalling danger.


Assuntos
Comportamento Animal/efeitos dos fármacos , Medo/efeitos dos fármacos , Aprendizagem/efeitos dos fármacos , Bulbo Olfatório/efeitos dos fármacos , Feromônios/farmacologia , Antagonistas Adrenérgicos beta/farmacologia , Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/metabolismo , Animais , Condicionamento Clássico/efeitos dos fármacos , Sinais (Psicologia) , Odorantes , Bulbo Olfatório/metabolismo , Ratos , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais/efeitos dos fármacos
10.
J Comp Neurol ; 500(6): 1050-63, 2007 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-17183538

RESUMO

The shell of the nucleus accumbens (NacSh) receives a dense innervation from dopamine (DA) neurons in the ventral tegmental area (VTA) and from glutamate neurons in the paraventricular nucleus of the thalamus (PVT). The present study examined in urethane-anesthetized rats the effects of electrical stimulation of the PVT on DA levels in the NacSh as measured with amperometry and chronoamperometry. Stimulation of the PVT (40 Hz, 1.0 ms, 400 microA, 5 seconds) resulted in a brief increase in electrochemical currents detected in the NacSh. Inhibition of DA neurons in the VTA using lidocaine (4%, 500 nL) or intravenous apomorphine (0.15 mg/kg) decreased the resting voltammetric signal but had no effect on PVT-evoked responses. Blocking of ionotropic glutamate receptors in the NacSh with local administration of kynurenic acid attenuated the PVT-evoked responses. Anterograde tracing with biotinylated dextran amine demonstrated that PVT targets regions of very dense tyrosine hydroxylase fiber staining in the NacSh. Consistent with the projection pattern of the PVT to the NacSh, stimulation of the PVT evoked the largest oxidation current changes in the NacSh, whereas small or no changes were elicited in other areas of the striatum. This study suggests that glutamate release from PVT terminals can act on ionotropic glutamate receptors in the NacSh to induce DA efflux. Modulation of DA levels in the NacSh by the PVT may be linked to arousal-induced increases in DA tone and could be involved in the facilitation of specific behavioral patterns associated with arousal or stressful situations.


Assuntos
Dopamina/metabolismo , Núcleos da Linha Média do Tálamo/citologia , Fibras Nervosas/metabolismo , Núcleo Accumbens/metabolismo , Animais , Estimulação Elétrica , Masculino , Neostriado/citologia , Neostriado/metabolismo , Vias Neurais/citologia , Vias Neurais/metabolismo , Núcleo Accumbens/citologia , Ratos , Ratos Sprague-Dawley
11.
Brain Struct Funct ; 222(9): 3927-3943, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28528379

RESUMO

The paraventricular nucleus of the thalamus (PVT) is a midline thalamic nucleus with dense projections to the nucleus accumbens (NAc), dorsolateral region of the bed nucleus of the stria terminalis (BSTDL) and the lateral/capsular region of the central nucleus of the amygdala (CeL/CeC). Recent experimental evidence indicates that the PVT is involved in both appetitive and aversive behaviors. However, it is unknown if subgroups of neurons in the PVT innervate different subcortical targets or if the same neurons issue collaterals to multiple areas. To address this issue, we injected two different fluorescent retrograde tracers, cholera toxin subunit B conjugated to Alexa Fluor-488 or Alexa Fluor-594, into different pairs of the subcortical targets including different parts of the NAc (shell, core, dorsomedial shell, and ventromedial shell), BSTDL, and amygdala (basolateral amygdala and CeL/CeC). The results indicate a moderate to high level of collateralization of projections from neurons in the PVT to NAc, BSTDL, and CeL/CeC suggesting a potential importance of the PVT in simultaneously coordinating the activity of key regions of the brain involved in mediating emotional and motivational behaviors. We also observed a difference in the subcortical targets innervated by the anterior PVT (aPVT) and posterior PVT (pPVT) showing that more neurons in the aPVT innervate the dorsomedial part of the NAc shell, while more neurons in the pPVT innervate the ventromedial NAc shell, BSTDL, and CeL/CeC. This observation is suggestive of a potential functional difference between the aPVT and pPVT.


Assuntos
Mapeamento Encefálico , Núcleos da Linha Média do Tálamo/fisiologia , Vias Neurais/fisiologia , Núcleo Accumbens/fisiologia , Núcleos Septais/fisiologia , Animais , Toxina da Cólera/metabolismo , Lateralidade Funcional/fisiologia , Masculino , Núcleos da Linha Média do Tálamo/anatomia & histologia , Núcleo Accumbens/anatomia & histologia , Fosfopiruvato Hidratase/metabolismo , Ratos , Ratos Sprague-Dawley
12.
eNeuro ; 4(6)2017.
Artigo em Inglês | MEDLINE | ID: mdl-29279859

RESUMO

This commentary focuses on novel findings by Clark et al. (2017) published in eNeuro, which show that dopamine D2 receptors (D2Rs) in the paraventricular nucleus of the thalamus (PVT) are involved in cocaine sensitization. We extend the discussion on how their findings contribute to our understanding of the role of the PVT in drug seeking by providing new insight on the role of the PVT in the regulation of food-seeking and fear responses. We also consider the significance of the neuroanatomical findings reported by Clark et al., that the PVT is reciprocally connected with areas of the brain involved in addiction and discuss the implications associated with the source and type of dopaminergic fibers innervating this area of the thalamus.


Assuntos
Comportamento de Procura de Droga , Núcleo Hipotalâmico Paraventricular , Animais , Encéfalo , Núcleos da Linha Média do Tálamo , Ratos , Ratos Sprague-Dawley , Tálamo
13.
Behav Brain Res ; 316: 47-53, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27575948

RESUMO

Orexin (hypocretin) neurons located in the posterior hypothalamus send projections to multiple areas of the brain involved in arousal and experimental evidence indicates that these neurons play a role in the physiological and behavioral responses to stress. This study was done to determine if the orexin system was involved in mediating the fear associated with shock context (5×2s of 1.5mA). First, real-time RT-PCR was used to examine changes in the mRNA levels for prepro-orexin (ppOX), the orexin-1 receptor (OX1R) and the orexin-2 receptor (OX2R) at two weeks post-shock. We found that the mRNA levels for ppOX and OX1R were increased in the posterior hypothalamus of shocked rats. In contrast, no significant difference was found in the midline thalamus or the locus coeruleus/parabrachial region. Second, the study examined if systemic injections of antagonists for orexin receptors attenuated the freezing related to contextual fear. The OX1R antagonist SB334867 (20 or 30mg/kg; i.p.) decreased freezing while the same doses of the OX2R antagonist TCSOX229 had no effect. The dual orexin antagonist TCS1102 (20mg/kg; i.p.) also decreased the freezing to the shock context. The results of the present study show upregulation of orexin activity and of the OX1R in the hypothalamus following exposure of rats to footshocks and highlight a specific role of OX1R in contextual fear.


Assuntos
Condicionamento Clássico/fisiologia , Medo/fisiologia , Regulação da Expressão Gênica/fisiologia , Orexinas/metabolismo , Transdução de Sinais/fisiologia , Animais , Benzoxazóis/farmacologia , Eletrochoque/efeitos adversos , Regulação da Expressão Gênica/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Isoquinolinas/farmacologia , Masculino , Naftiridinas , Antagonistas dos Receptores de Orexina/farmacologia , Receptores de Orexina/metabolismo , Piridinas/farmacologia , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Ureia/análogos & derivados , Ureia/farmacologia
14.
J Comp Neurol ; 497(2): 155-65, 2006 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-16705679

RESUMO

The paraventricular nucleus of the thalamus (PVT) is a midline thalamic nucleus with heavy projections to the nucleus accumbens and other limbic regions. Previous studies have shown that the PVT contains fibers immunoreactive for cocaine- and amphetamine-related transcript (CART). The purpose of the present study was to determine the location of CART neurons innervating the PVT of the rat by using retrograde tracing with cholera toxin B (CTb) combined with immunofluorescence for CTb and CART (amino acid sequence 55-102). Immunohistochemical analysis of CART in the dorsal thalamus showed that the PVT is densely innervated by CART fibers whereas adjacent midline and intralaminar thalamic nuclei are unlabeled. Injections of CTb in the dorsal midline thalamus retrogradely labeled neurons in several areas of the hypothalamus and brainstem which also contained CART neurons. The largest number of double-labeled neurons (CTb/CART) was found in the arcuate nucleus of the hypothalamus. CTb/CART neurons were also found in the lateral hypothalamus, zona incerta, and periventricular hypothalamus. These results indicate that the arcuate nucleus is a major source of CART fibers in the PVT. CART neurons in the arcuate nucleus monitor circulating hormonal signals and may regulate food intake and hypothalamic-pituitary-adrenal (HPA) activity. Consequently, CART neurons in the arcuate nucleus may transmit signals to the PVT which in turn may influence limbic regions involved in regulating food intake and the HPA.


Assuntos
Hipotálamo/citologia , Núcleos da Linha Média do Tálamo/anatomia & histologia , Proteínas do Tecido Nervoso/metabolismo , Neurônios/fisiologia , Animais , Toxina da Cólera/farmacocinética , Imuno-Histoquímica/métodos , Masculino , Núcleos da Linha Média do Tálamo/efeitos dos fármacos , Núcleos da Linha Média do Tálamo/metabolismo , Vias Neurais/citologia , Vias Neurais/metabolismo , Ratos , Ratos Sprague-Dawley , Sinaptofisina/metabolismo
16.
PLoS One ; 11(12): e0167569, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27907151

RESUMO

Post-traumatic stress disorder (PTSD) is a chronic syndrome triggered by exposure to trauma and a failure to recover from a normal negative emotional reaction to traumatic stress. The neurobiology of PTSD and the participation of neuropeptides in the neural systems and circuits that control fear and anxiety are not fully understood. The long-term dysregulation of neuropeptide systems contributes to the development of anxiety disorders, including PTSD. The neuropeptide galanin (Gal) and its receptors participate in anxiety-like and depression-related behaviors via the modulation of neuroendocrine and monoaminergic systems. The objective of this research was to investigate how Gal expression changes in the brain of rats 2 weeks after exposure to footshock. Rats exposed to footshocks were subdivided into high responders (HR; immobility>60%) and low responders (LR; immobility<40%) based on immobility elicited by a novel tone one day after exposure. On day 14, rats were anesthetized, and the amygdala, hypothalamus, pituitary and adrenal glands were removed for analysis using real-time polymerase chain reaction (RT-PCR). Gal mRNA levels were increased in the amygdala and hypothalamus of HR compared with the control and LR. In contrast, Gal mRNA levels were decreased in the adrenal and pituitary glands of HR compared with the control and LR. Thus, the differential regulation (dysregulation) of the neuropeptide Gal in these tissues may contribute to anxiety and PTSD development.


Assuntos
Ansiedade/genética , Galanina/genética , Resposta de Imobilidade Tônica , Precursores de Proteínas/genética , RNA Mensageiro/genética , Transtornos de Estresse Pós-Traumáticos/genética , Estresse Psicológico/genética , Glândulas Suprarrenais/metabolismo , Glândulas Suprarrenais/fisiopatologia , Tonsila do Cerebelo/metabolismo , Tonsila do Cerebelo/fisiopatologia , Animais , Ansiedade/metabolismo , Ansiedade/fisiopatologia , Modelos Animais de Doenças , Eletrochoque , Medo/psicologia , Galanina/metabolismo , Regulação da Expressão Gênica , Humanos , Hipotálamo/metabolismo , Hipotálamo/fisiopatologia , Masculino , Especificidade de Órgãos , Hipófise/metabolismo , Hipófise/fisiopatologia , Precursores de Proteínas/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Transtornos de Estresse Pós-Traumáticos/metabolismo , Transtornos de Estresse Pós-Traumáticos/fisiopatologia , Estresse Psicológico/metabolismo , Estresse Psicológico/fisiopatologia
17.
Brain Res ; 1059(2): 179-88, 2005 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-16168969

RESUMO

The paraventricular nucleus of the thalamus (PVT) is a midline thalamic nucleus with projections to limbic forebrain areas such as the nucleus accumbens and amygdala. The orexin (hypocretin) peptides are synthesized in hypothalamic neurons that project throughout the CNS. The present experiments were done to describe the extent of orexin fiber innervation of the PVT in comparison to other midline and intralaminar thalamic nuclei and to establish the location and proportion of orexin neurons innervating the PVT. All aspects of the anteroposterior PVT were found to be densely innervated by orexin fibers with numerous enlargements that also stained for synaptophysin, a marker for synaptic vesicle protein associated with pre-synaptic sites. Small discrete injections of cholera toxin B into the PVT of rats resulted in the retrograde labeling of a relatively small number of orexin neurons in the medial and lateral hypothalamus. The results also showed a lack of topographical organization among orexin neurons projecting to the PVT. Previous studies indicate that orexin neurons and neurons in the PVT appear to be most active during periods of arousal. Therefore, orexin neurons and their projections to the PVT may be part of a limbic forebrain arousal system.


Assuntos
Mapeamento Encefálico , Hipotálamo/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Núcleos da Linha Média do Tálamo/metabolismo , Vias Neurais/metabolismo , Neuropeptídeos/metabolismo , Animais , Imunofluorescência , Hipotálamo/citologia , Masculino , Núcleos da Linha Média do Tálamo/citologia , Vias Neurais/citologia , Orexinas , Ratos , Ratos Sprague-Dawley , Sinaptofisina/metabolismo , Núcleos Talâmicos/citologia , Núcleos Talâmicos/metabolismo , Distribuição Tecidual
18.
Neurosci Biobehav Rev ; 56: 315-29, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26255593

RESUMO

This article reviews the anatomical connections of the paraventricular nucleus of the thalamus (PVT) and discusses some of the connections by which the PVT could influence behavior. The PVT receives neurochemically diverse projections from the brainstem and hypothalamus with an especially strong innervation from peptide producing neurons. Anatomical evidence is also presented which suggests that the PVT relays information from neurons involved in visceral or homeostatic functions. In turn, the PVT is a major source of projections to the nucleus accumbens, the bed nucleus of the stria terminalis and the central nucleus of the amygdala as well as the cortical areas associated with these subcortical regions. The PVT is activated by conditions and cues that produce states of arousal including those with appetitive or aversive emotional valences. The paper focuses on the potential contribution of the PVT to circadian rhythms, fear, anxiety, food intake and drug-seeking. The information in this paper highlights the potential importance of the PVT as being a component of the brain circuits that regulate reward and defensive behavior with the hope of generating more research in this relatively understudied region of the brain.


Assuntos
Encéfalo/fisiologia , Mecanismos de Defesa , Núcleos da Linha Média do Tálamo/fisiologia , Rede Nervosa/fisiologia , Recompensa , Animais , Humanos , Núcleos da Linha Média do Tálamo/citologia , Vias Neurais/fisiologia , Neurônios/fisiologia
19.
Neuropeptides ; 54: 1-7, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26363852

RESUMO

Corticotropin releasing factor (CRF) and dynorphin are neuropeptides that are associated with the negative emotional states. Experimental evidence indicates that dynorphin neurons located in the nucleus accumbens and CRF neurons in the bed nucleus of the stria terminalis (BST) and the central nucleus of the amygdala (CeA) mediate anxiety-like behaviors immediately after the stressful experience (24-48h). The present study was done to evaluate if changes in the levels of the mRNA for these peptides in the striatum, BST, and CeA were associated with the long-lasting avoidance of novelty, a measure of an anxiety-like state, in a subset of rats exposed to unpredictable and moderately intense footshocks (5×2s of 1.5mA). Shocked rats with enhanced fear to a novel tone 24h after the footshocks (high responders; HR) displayed long-lasting avoidance in the elevated T-maze whereas shocked rats with low levels of acute fear (low responders; LR) had low levels of avoidance similar to nonshocked rats. An increase in the level of proCRF mRNA was detected in the CeA of the HR compared to LR and nonshocked rats but not in other areas of the brain sampled. In contrast, prodynorphin and proenkephalin mRNA levels in the striatum, BST and CeA were not different between HR, LR and nonshocked rats. This study provides evidence that CRF neurons in the CeA may play a role in the anxiety-like state produced in a subset of rats exposed to footshocks.


Assuntos
Ansiedade/metabolismo , Núcleo Central da Amígdala/metabolismo , Corpo Estriado/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Encefalinas/metabolismo , Precursores de Proteínas/metabolismo , Núcleos Septais/metabolismo , Animais , Aprendizagem da Esquiva/fisiologia , Eletrochoque , Medo/fisiologia , Masculino , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley
20.
Front Behav Neurosci ; 9: 161, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26136671

RESUMO

The paraventricular nucleus of the thalamus (PVT) projects to the central nucleus of the amygdala and recent experimental evidence indicates a role for the PVT in conditioned fear. Furthermore, the PVT contains a high density of orexin receptors and fibers and acute injections of orexin antagonist into the PVT produce anxiolytic effects. The present study was done to determine if administration of a dual orexin receptor antagonist (DORA) in the region of the PVT interferes with the expression of conditioned fear in rats exposed to cued and contextual conditioning paradigms. Infusion of 0.5 µl of the DORA N-biphenyl-2-yl-1-[(1-methyl-1H-benzimidazol-2yl) sulfanyl] acetyl-L-prolinamide at a concentration of 0.1, 1.0, and 10 nmol had no effect on the freezing produced by exposing rats to an auditory cue or the context associated with foot shock. In contrast, the 1.0 and 10 nmol doses were anxiolytic in the social interaction test. The results of the present study do not support a role for orexin receptors in the PVT in the expression of learned fear. The finding that the 1.0 and 10 nmol doses of DORA in the PVT region were anxiolytic in the social interaction test is consistent with other studies indicating a role for orexins in the PVT in anxiety-like behaviors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA