Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Anal Bioanal Chem ; 416(2): 373-386, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37946036

RESUMO

Continuous manufacturing is becoming increasingly important in the (bio-)pharmaceutical industry, as more product can be produced in less time and at lower costs. In this context, there is a need for powerful continuous analytical tools. Many established off-line analytical methods, such as mass spectrometry (MS), are hardly considered for process analytical technology (PAT) applications in biopharmaceutical processes, as they are limited to at-line analysis due to the required sample preparation and the associated complexity, although they would provide a suitable technique for the assessment of a wide range of quality attributes. In this study, we investigated the applicability of a recently developed micro simulated moving bed chromatography system (µSMB) for continuous on-line sample preparation for MS. As a test case, we demonstrate the continuous on-line MS measurement of a protein solution (myoglobin) containing Tris buffer, which interferes with ESI-MS measurements, by continuously exchanging this buffer with a volatile ammonium acetate buffer suitable for MS measurements. The integration of the µSMB significantly increases MS sensitivity by removing over 98% of the buffer substances. Thus, this study demonstrates the feasibility of on-line µSMB-MS, providing a versatile PAT tool by combining the detection power of MS for various product attributes with all the advantages of continuous on-line analytics.

2.
Angew Chem Int Ed Engl ; 63(11): e202318559, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38153004

RESUMO

Electron-phonon interactions, crucial in condensed matter, are rarely seen in Metal-Organic Frameworks (MOFs). Detecting these interactions typically involves analyzing luminescence in lanthanide- or actinide-based compounds. Prior studies on Ln- and Ac-based MOFs at high temperatures revealed additional peaks, but these were too faint for thorough analysis. In our research, we fabricated a high-quality, crystalline uranium-based MOF (KIT-U-1) thin film using a layer-by-layer method. Under UV light, this film showed two distinct "hot bands," indicating a strong electron-phonon interaction. At 77 K, these bands were absent, but at 300 K, a new emission band appeared with half the intensity of the main luminescence. Surprisingly, a second hot band emerged above 320 K, deviating from previous findings in rare-earth compounds. We conducted a detailed ab-initio analysis employing time-dependent density functional theory to understand this unusual behaviour and to identify the lattice vibration responsible for the strong electron-phonon coupling. The KIT-U-1 film's hot-band emission was then utilized to create a highly sensitive, single-compound optical thermometer. This underscores the potential of high-quality MOF thin films in exploiting the unique luminescence of lanthanides and actinides for advanced applications.

3.
Chembiochem ; 23(21): e202200417, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36066474

RESUMO

The study of cysteine modifications has gained much attention in recent years. This includes detailed investigations in the field of redox biology with focus on numerous redox derivatives like nitrosothiols, sulfenic acids, sulfinic acids and sulfonic acids resulting from increasing oxidation, S-lipidation, and perthiols. For these studies selective and rapid blocking of free protein thiols is required to prevent disulfide rearrangement. In our attempt to find new inhibitors of human histone deacetylase 8 (HDAC8) we discovered 5-sulfonyl and 5-sulfinyl substituted 1,2,4-thiadiazoles (TDZ), which surprisingly show an outstanding reactivity against thiols in aqueous solution. Encouraged by these observations we investigated the mechanism of action in detail and show that these compounds react more specifically and faster than commonly used N-ethyl maleimide, making them superior alternatives for efficient blocking of free thiols in proteins. We show that 5-sulfonyl-TDZ can be readily applied in commonly used biotin switch assays. Using the example of human HDAC8, we demonstrate that cysteine modification by a 5-sulfonyl-TDZ is easily measurable using quantitative HPLC/ESI-QTOF-MS/MS, and allows for the simultaneous measurement of the modification kinetics of seven solvent-accessible cysteines in HDAC8.


Assuntos
Compostos de Sulfidrila , Tiadiazóis , Humanos , Cisteína/metabolismo , Tiadiazóis/farmacologia , Espectrometria de Massas em Tandem , Ácidos Sulfênicos , Oxirredução , Histona Desacetilases/metabolismo , Proteínas Repressoras/metabolismo
4.
Angew Chem Int Ed Engl ; 61(18): e202117144, 2022 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-35133704

RESUMO

Fully exploiting the potential of enzymes in cell-free biocatalysis requires stabilization of the catalytically active proteins and their integration into efficient reactor systems. Although in recent years initial steps towards the immobilization of such biomolecules in metal-organic frameworks (MOFs) have been taken, these demonstrations have been limited to batch experiments and to aqueous conditions. Here we demonstrate a MOF-based continuous flow enzyme reactor system, with high productivity and stability, which is also suitable for organic solvents. Under aqueous conditions, the stability of the enzyme was increased 30-fold, and the space-time yield exceeded that obtained with other enzyme immobilization strategies by an order of magnitude. Importantly, the infiltration of the proteins into the MOF did not require additional functionalization, thus allowing for time- and cost-efficient fabrication of the biocatalysts using label-free enzymes.


Assuntos
Enzimas Imobilizadas , Estruturas Metalorgânicas , Biocatálise , Catálise , Enzimas/metabolismo , Enzimas Imobilizadas/metabolismo , Estruturas Metalorgânicas/metabolismo , Proteínas/metabolismo , Solventes
5.
Transfus Med Hemother ; 48(1): 39-47, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33708051

RESUMO

BACKGROUND: Red blood cells (RBCs) stored for transfusions can lyse over the course of the storage period. The lysis is traditionally assumed to occur via the formation of spiculated echinocyte forms, so that cells that appear smoother are assumed to have better storage quality. We investigate this hypothesis by comparing the morphological distribution to the hemolysis for samples from different donors. METHODS: Red cell concentrates were obtained from a regional blood bank quality control laboratory. Out of 636 units processed by the laboratory, we obtained 26 high hemolysis units and 24 low hemolysis units for assessment of RBC morphology. The association between the morphology and the hemolysis was tested with the Wilcoxon-Mann-Whitney U test. RESULTS: Samples with high stomatocyte counts (p = 0.0012) were associated with increased hemolysis, implying that cells can lyse via the formation of stomatocytes. CONCLUSION: RBCs can lyse without significant echinocyte formation. Lower degrees of spiculation are not a good indicator of low hemolysis when RBCs from different donors are compared.

6.
Chemistry ; 26(58): 13249-13255, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32428298

RESUMO

Human histone deacetylase 8 is a well-recognized target for T-cell lymphoma and particularly childhood neuroblastoma. PD-404,182 was shown to be a selective covalent inhibitor of HDAC8 that forms mixed disulfides with several cysteine residues and is also able to transform thiol groups to thiocyanates. Moreover, HDAC8 was shown to be regulated by a redox switch based on the reversible formation of a disulfide bond between cysteines Cys102 and Cys153 . This study on the distinct effects of PD-404,182 on HDAC8 reveals that this compound induces the dose-dependent formation of intramolecular disulfide bridges. Therefore, the inhibition mechanism of HDAC8 by PD-404,182 involves both, covalent modification of thiols as well as ligand mediated disulfide formation. Moreover, this study provides a deep molecular insight into the regulation mechanism of HDAC8 involving several cysteines with graduated capability to form reversible disulfide bridges.

7.
Vox Sang ; 115(8): 655-663, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32378231

RESUMO

BACKGROUND AND OBJECTIVES: Red blood cells that are stored for transfusions as red cell concentrates (RCCs) undergo changes during the storage period, culminating in the lysis of the cells. The goal of this work is to find markers that are linked to high haemolysis, in order to explain the inter-donor variability that is known to occur in storage quality, and also the known differences between RCCs from male and female donors. MATERIALS AND METHODS: The relative amounts of lipids at the end of the storage period were compared for one group of low haemolysis samples (24 units, all ≤0·15% haemolysis), and one group of high haemolysis samples (26 units, all ≥0·5% haemolysis). Representative lipids were analysed from different lipid classes, including cholesterol, phosphatidylcholine, phosphatidylethanolamine, sphingomyelin and ceramide. Whole membrane preparations were analysed with one mass spectrometry technique, and lipid extracts were analysed with a second mass spectrometry technique. RESULTS: The ratio of palmitoyl-oleoyl phosphatidylcholine (POPC) to sphingomyelin was different for the high and low haemolysis groups (P = 0·0001) and for the RCCs from male and female donors (P = 0·0009). The ratio of cholesterol to phospholipids showed only minimal links to haemolysis. Higher relative amounts of sphingomyelin were associated with lower haemolysis, and higher relative amounts of ceramides were associated with increased haemolysis. CONCLUSION: The level of sphingomyelinase activity and the resulting ratio of sphingomyelin to POPC is proposed as a possible marker for RCC storage quality.


Assuntos
Preservação de Sangue/normas , Eritrócitos/metabolismo , Lipídeos/análise , Caracteres Sexuais , Colesterol/análise , Feminino , Hemólise , Humanos , Masculino , Fosfolipídeos/análise
8.
Transfus Med Hemother ; 45(6): 413-422, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30574059

RESUMO

BACKGROUND: During storage of red blood cell (RBC) concentrates, the plasticizer di-2-ethylhexylphthalate (DEHP) that keeps the blood bags soft leaches out and can be taken up by the RBCs. DEHP is known to be beneficial for the RBC storage quality, but the molecular mechanisms of the action are unknown. METHODS: Aqueous suspensions of DEHP were added to RBCs in buffer. The morphological effects were observed on RBCs from 5 donors. Flow cytometry with annexin A5 binding was used to measure the exposed phosphatidylserine. RESULTS: DEHP induced the formation of stomatocytes at concentrations as low as ng/ml, provided that the cell suspension was also sufficiently dilute. Some spherocytes, which were susceptible to lysis, were also formed; after lysis, RBC ghosts were seen to continue the transition to the cup-shaped stomatocyte form. Incubation with DEHP increased the exposed phosphatidylserine, an effect that was also observed in the presence of vanadate, which inhibits the ATP-dependent translocases that maintain the membrane's lipid asymmetry. CONCLUSIONS: DEHP can have an active effect on RBC shape, instead of just preventing the storage-related shape changes. The effect appears to be mediated by increased flip-flop of lipids between the leaflets of the RBC membrane.

9.
Angew Chem Int Ed Engl ; 57(41): 13662-13665, 2018 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-30160815

RESUMO

Photochemical reactions typically proceed via multiple reaction pathways, yielding a variety of isomers and products. Enhancing the selectivity is challenging. Now, the potential of supramolecular control for oxidative photocyclization of a tetraarylethylene, containing a stereogenic -C=C- bond, is demonstrated. In solution, this photochemical reaction produces three constitutional isomers (substituted phenanthrenes), with slow kinetics. When the reactant is assembled into a crystalline framework, only one product forms with accelerated kinetics. Key to this selectivity enhancement is the integration into a surface grown metal-organic framework (SURMOF); the dramatic gain in selectivity is ascribed to the hindrance of the rotational freedom of the -C=C- double bond. The structure of the MOF is key; the corresponding reaction in the solid does not result in such a high increase in selectivity. A striking change of luminescence properties after photocyclization is observed.

10.
Anal Bioanal Chem ; 409(25): 5965-5974, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28801691

RESUMO

Conditioning films are an important factor in the initiation and development of microbial biofilms, which are the leading cause of chronic infections associated with medical devices. Here, we analyzed the protein content of conditioning films formed after exposure to supernatants of cultures of the human pathogen Pseudomonas aeruginosa PAO1. Adhesion of substances from the supernatant was monitored using quartz crystal microbalance with dissipation monitoring (QCM-D) sensor chips modified with the commonly used implant material titanium dioxide (TiO2). Attached proteins were identified after on-chip digestion using matrix-assisted laser desorption/ionization (MALDI) time of flight (ToF) mass spectrometry (MS), and a new data processing tool consisting of an XML-database with theoretical tryptic peptides of every PAO1 protein and PHP scripts. Sub-databases containing only proteins, that we found in all replicates, were created and used for MS/MS precursor selection. The obtained MS/MS peaklists were then matched against theoretical fragmentations of the expected peptide sequences to verify protein identification. Using this approach we were able to identify 40 surface-associated proteins. In addition to extracellular proteins such as adhesins, a number of intra-cellular proteins were identified which may be involved in conditioning film formation, suggesting an as-yet unidentified role for these proteins, possibly after cell lysis. Graphical Abstract Flowchart of the method.


Assuntos
Proteínas de Bactérias/análise , Biofilmes , Pseudomonas aeruginosa/fisiologia , Técnicas de Microbalança de Cristal de Quartzo/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Adsorção , Proteínas de Bactérias/metabolismo , Humanos , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/química , Propriedades de Superfície
11.
Small ; 12(42): 5836-5844, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27606563

RESUMO

Biological responses of cells and organisms to nanoparticle exposure crucially depend on the properties of the protein adsorption layer ("protein corona") forming on nanoparticle surfaces and their characterization is a crucial step toward a deep, mechanistic understanding of their build-up. Previously, adsorption of one type of model protein on nanoparticles was systematically studied in situ by using fluorescence correlation spectroscopy. Here, the first such study of interactions is presented between water-solubilized CdSe/ZnS quantum dots (QDs) and a complex biofluid, human blood serum. Despite the large number of proteins in serum, a protein layer of well-defined (average) thickness forming on QD surfaces is observed. Both the thickness and the apparent binding affinity depend on the type of QD surface ligand. Kinetic experiments reveal that the protein corona formed from serum is irreversibly bound, whereas the one formed from human serum albumin was earlier observed to be reversible. By using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and mass spectrometry, the most abundant serum proteins contributing to the formation of a hard corona on the QDs are identified.

12.
Water Sci Technol ; 73(3): 607-16, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26877044

RESUMO

Organic micropollutants (MPs), in particular xenobiotics and their transformation products, have been detected in the aquatic environment and the main sources of these MPs are wastewater treatment plants. Therefore, an additional cleaning step is necessary. The use of activated carbon (AC) is one approach to providing this additional cleaning. Industrial AC derived from different carbonaceous materials is predominantly produced in low-income countries by polluting processes. In contrast, AC derived from sewage sludge by hydrothermal carbonization (HTC) is a regional and sustainable alternative, based on waste material. Our experiments demonstrate that the HTC-AC from sewage sludge was able to remove most of the applied MPs. In fact more than 50% of sulfamethoxazole, diclofenac and bezafibrate were removed from artificial water samples. With the same approach carbamazepine was eliminated to nearly 70% and atrazine more than 80%. In addition a pre-treated (phosphorus-reduced) HTC-AC was able to eliminate 80% of carbamazepine and diclofenac. Atrazine, sulfamethoxazole and bezafibrate were removed to more than 90%. Experiments using real wastewater samples with high organic content (11.1 g m(-3)) succeeded in proving the adsorption capability of phosphorus-reduced HTC-AC.


Assuntos
Carvão Vegetal/química , Esgotos/análise , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/análise , Poluentes Químicos da Água/química , Adsorção , Eliminação de Resíduos Líquidos/instrumentação
13.
Sensors (Basel) ; 15(5): 11873-88, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-26007735

RESUMO

We propose surface acoustic wave (SAW) resonators as a complementary tool for conditioning film monitoring. Conditioning films are formed by adsorption of inorganic and organic substances on a substrate the moment this substrate comes into contact with a liquid phase. In the case of implant insertion, for instance, initial protein adsorption is required to start wound healing, but it will also trigger immune reactions leading to inflammatory responses. The control of the initial protein adsorption would allow to promote the healing process and to suppress adverse immune reactions. Methods to investigate these adsorption processes are available, but it remains difficult to translate measurement results into actual protein binding events. Biosensor transducers allow user-friendly investigation of protein adsorption on different surfaces. The combination of several transduction principles leads to complementary results, allowing a more comprehensive characterization of the adsorbing layer. We introduce SAW resonators as a novel complementary tool for time-resolved conditioning film monitoring. SAW resonators were coated with polymers. The adsorption of the plasma proteins human serum albumin (HSA) and fibrinogen onto the polymer-coated surfaces were monitored. Frequency results were compared with quartz crystal microbalance (QCM) sensor measurements, which confirmed the suitability of the SAW resonators for this application.


Assuntos
Materiais Biocompatíveis/química , Biofilmes , Pesquisa Biomédica/instrumentação , Proteínas Sanguíneas/química , Som , Desenho de Equipamento , Humanos , Polímeros , Próteses e Implantes , Técnicas de Microbalança de Cristal de Quartzo
14.
Biomacromolecules ; 15(7): 2398-406, 2014 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-24956040

RESUMO

In the fields of surgery and regenerative medicine, it is crucial to understand the interactions of proteins with the biomaterials used as implants. Protein adsorption directly influences cell-material interactions in vivo and, as a result, regulates, for example, cell adhesion on the surface of the implant. Therefore, the development of suitable analytical techniques together with well-defined model systems allowing for the detection, characterization, and quantification of protein adsorbates is essential. In this study, a protocol for the deposition of highly stable, thin gelatin-based films on various substrates has been developed. The hydrogel films were characterized morphologically and chemically. Due to the obtained low thickness of the hydrogel layer, this setup allowed for a quantitative study on the interaction of human proteins (albumin and fibrinogen) with the hydrogel by Quartz Crystal Microbalance with Dissipation Monitoring (QCM-D). This technique enables the determination of adsorbant mass and changes in the shear modulus of the hydrogel layer upon adsorption of human proteins. Furthermore, Secondary Ion Mass Spectrometry and principal component analysis was applied to monitor the changed composition of the topmost adsorbate layer. This approach opens interesting perspectives for a sensitive screening of viscoelastic biomaterials that could be used for regenerative medicine.


Assuntos
Materiais Biocompatíveis/química , Fibrinogênio/química , Gelatina/química , Técnicas de Microbalança de Cristal de Quartzo/métodos , Albumina Sérica/química , Animais , Humanos , Metilgalactosídeos/química , Análise de Componente Principal , Medicina Regenerativa , Pele/química , Suínos
15.
Appl Microbiol Biotechnol ; 98(21): 8905-15, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25091045

RESUMO

Actinomycetales are known to produce various secondary metabolites including products with surface-active and emulsifying properties known as biosurfactants. In this study, the nonpathogenic actinomycetes Tsukamurella spumae and Tsukamurella pseudospumae are described as producers of extracellular trehalose lipid biosurfactants when grown on sunflower oil or its main component glyceryltrioleate. Crude extracts of the trehalose lipids were purified using silica gel chromatography. The structure of the two trehalose lipid components (TL A and TL B) was elucidated using a combination of matrix-assisted laser desorption/ionization time-of-flight/time-of-flight/tandem mass spectroscopy (MALDI-ToF-ToF/MS/MS) and multidimensional NMR experiments. The biosurfactants were identified as 1-α-glucopyranosyl-1-α-glucopyranosid carrying two acyl chains varying of C4 to C6 and C16 to C18 at the 2' and 3' carbon atom of one sugar unit. The trehalose lipids produced demonstrate surface-active behavior and emulsifying capacity. Classified as risk group 1 organisms, T. spumae and T. pseudospumae hold potential for the production of environmentally friendly surfactants.


Assuntos
Actinobacteria/metabolismo , Metabolismo dos Lipídeos , Tensoativos/metabolismo , Trealose/metabolismo , Cromatografia em Gel , Meios de Cultura/química , Lipídeos/isolamento & purificação , Espectroscopia de Ressonância Magnética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Tensoativos/isolamento & purificação , Espectrometria de Massas em Tandem , Trealose/isolamento & purificação
16.
Front Bioeng Biotechnol ; 10: 878838, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35814018

RESUMO

Elastin-like proteins (ELPs) are polypeptides with potential applications as renewable bio-based high-performance polymers, which undergo a stimulus-responsive reversible phase transition. The ELP investigated in this manuscript-ELP[V2Y-45]-promises fascinating mechanical properties in biomaterial applications. Purification process scalability and purification performance are important factors for the evaluation of potential industrial-scale production of ELPs. Salt-induced precipitation, inverse transition cycling (ITC), and immobilized metal ion affinity chromatography (IMAC) were assessed as purification protocols for a polyhistidine-tagged hydrophobic ELP showing low-temperature transition behavior. IMAC achieved a purity of 86% and the lowest nucleic acid contamination of all processes. Metal ion leakage did not propagate chemical modifications and could be successfully removed through size-exclusion chromatography. The simplest approach using a high-salt precipitation resulted in a 60% higher target molecule yield compared to both other approaches, with the drawback of a lower purity of 60% and higher nucleic acid contamination. An additional ITC purification led to the highest purity of 88% and high nucleic acid removal. However, expensive temperature-dependent centrifugation steps are required and aggregation effects even at low temperatures have to be considered for the investigated ELP. Therefore, ITC and IMAC are promising downstream processes for biomedical applications with scale-dependent economical costs to be considered, while salt-induced precipitation may be a fast and simple alternative for large-scale bio-based polymer production.

17.
Nat Commun ; 12(1): 5462, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34526503

RESUMO

Salicylic acid is a phenolic phytohormone which controls plant growth and development. A methyl ester (MSA) derivative thereof is volatile and involved in plant-insect or plant-plant communication. Here we show that the nematode-trapping fungus Duddingtonia flagrans uses a methyl-salicylic acid isomer, 6-MSA as morphogen for spatiotemporal control of trap formation and as chemoattractant to lure Caenorhabditis elegans into fungal colonies. 6-MSA is the product of a polyketide synthase and an intermediate in the biosynthesis of arthrosporols. The polyketide synthase (ArtA), produces 6-MSA in hyphal tips, and is uncoupled from other enzymes required for the conversion of 6-MSA to arthrosporols, which are produced in older hyphae. 6-MSA and arthrosporols both block trap formation. The presence of nematodes inhibits 6-MSA and arthrosporol biosyntheses and thereby enables trap formation. 6-MSA and arthrosporols are thus morphogens with some functions similar to quorum-sensing molecules. We show that 6-MSA is important in interkingdom communication between fungi and nematodes.


Assuntos
Ascomicetos/fisiologia , Caenorhabditis elegans/fisiologia , Hifas/fisiologia , Comportamento Predatório/fisiologia , Ácido Salicílico/metabolismo , Animais , Ascomicetos/genética , Ascomicetos/metabolismo , Quimiotaxia/fisiologia , Proteínas Fúngicas/metabolismo , Hifas/genética , Hifas/metabolismo , Policetídeo Sintases/metabolismo , Ácido Salicílico/química , Esporos Fúngicos/genética , Esporos Fúngicos/metabolismo
18.
ACS Appl Mater Interfaces ; 13(48): 57768-57773, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34808056

RESUMO

Metal-organic frameworks (MOFs) built from different building units offer functionalities going far beyond gas storage and separation. In connection with advanced applications, e.g., in optoelectronics, hierarchical MOF-on-MOF structures fabricated using sophisticated methodologies have recently become particularly attractive. Here, we demonstrate that the structural complexity of MOF-based architectures can be further increased by employing highly spatioselective photochemistry. Using a layer-by-layer, quasi-epitaxial synthesis method, we realized a photoactive MOF-on-MOF hetero-bilayer consisting of a porphyrinic bottom layer and a tetraphenylethylene (TPE)-based top layer. Illumination of the monolithic thin film with visible light in the presence of oxygen gas results in the generation of reactive oxygen species (1O2) in the porphyrinic bottom layer, which lead to a photocleavage of the TPE units at the internal interface. We demonstrate that this spatioselective photochemistry can be utilized to delaminate the top layers, yielding two-dimensional (2D) MOF sheets with well-defined thickness. Experiments using atomic force microscopy (AFM) demonstrate that these platelets can be transferred onto other substrates, thus opening up the possibility of fabricating planar MOF structures using photolithography.

19.
Sci Rep ; 10(1): 3587, 2020 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-32107432

RESUMO

Iron is one of the most abundant elements on earth and essential for life. However, Fe3+ ions are rather insoluble and microorganisms such as fungi may use siderophores as strong chelators for uptake. In addition, free cytoplasmic iron is rather toxic and intracellular siderophores are used to control the toxicity. Siderophores are also important for iron storage. We studied two siderophore systems in the plant necrotrophic fungus Alternaria alternata and show that the non-ribosomal peptide synthase, Nps2, is required for the biosynthesis of intracellular ferricrocin, whereas Nps6 is needed for the formation of extracellular coprogen and coprogen B. Whereas nps2 was dispensable for growth on iron-depleted medium, nps6 was essential under those conditions. nps2 deletion caused an increase in spore formation and reduced pathogenicity on tomato. Our results suggest that A. alternata employs an external and an internal siderophore system to adapt to low iron conditions.


Assuntos
Alternaria/metabolismo , Ferro/metabolismo , Sideróforos/biossíntese , Alternaria/enzimologia , Alternaria/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo
20.
Nanoscale ; 12(48): 24419-24428, 2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33300536

RESUMO

We herein present a case study on the templated, Pd-catalyzed polymerization reaction of methyl propiolate in the confined pore space of three different surface anchored metal-organic framework (SURMOF) systems in order to introduce electrical conductivity to MOF thin films and provide predictions for potential device integrations. To gain comprehensive insight into the influence of the template on polymerization, we chose Cu(bpdc), Cu2(bdc)2(dabco) and HKUST-1 because of their different types of pore channels, 1D, quasi-1D and 3D, and their free pore volumes. Well-defined MOF thin films were prepared using layer-by-layer deposition, which allows for the application of several characterization techniques not applicable for conventional powder MOFs. With SEM, AFM, XRD, MALDI-ToF/MS, ToF-SIMS and QCM, we were able to investigate the behaviour of the polymer formation. For lower dimensional pore channels, we find a depot-like release of monomeric units leading to top-layer formation determined by desorption kinetics, whereas for the 3D channels, quick release of an excess amount of monomers was observed and polymerization proceeds perfectly. Despite polymerization issues, control over the maximum chain lengths and the molecular weight distribution was achieved depending on the dimensionality of the pore systems. For the HKUST-1 system, polymerization was optimized and we were able to measure the electrical conductivity introduced by the conjugated polymer inside the channels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA